CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1050-1063.DOI: 10.11949/0438-1157.20240891
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Zhongqing LI1, Zhiyuan WANG1(
), Xiaojian LUAN2, Sikai LIANG1, Kai WANG1
Received:2024-08-05
Revised:2024-09-01
Online:2025-03-28
Published:2025-03-25
Contact:
Zhiyuan WANG
通讯作者:
王志远
作者简介:李中青(2000—),男,硕士研究生,llq10162457 @163.com
基金资助:CLC Number:
Zhongqing LI, Zhiyuan WANG, Xiaojian LUAN, Sikai LIANG, Kai WANG. Preparation of MnO coating based on electroplating-low oxygen partial pressure treatment and coking inhibition properties during thermal cracking of naphtha[J]. CIESC Journal, 2025, 76(3): 1050-1063.
李中青, 王志远, 栾小建, 梁四凯, 王凯. 电沉积-低氧分压法制备MnO涂层及其抑制石脑油热裂解结焦性能研究[J]. 化工学报, 2025, 76(3): 1050-1063.
Add to citation manager EndNote|Ris|BibTeX
| 成分 | 质量分数/% |
|---|---|
| C | ≤0.080 |
| Mn | ≤2.000 |
| P | ≤0.045 |
| S | ≤0.030 |
| Si | ≤1.500 |
| Cr | 24.000~28.000 |
| Ni | 19.000~22.000 |
| Fe | 其余 |
Table 1 Chemical composition of 310S alloy
| 成分 | 质量分数/% |
|---|---|
| C | ≤0.080 |
| Mn | ≤2.000 |
| P | ≤0.045 |
| S | ≤0.030 |
| Si | ≤1.500 |
| Cr | 24.000~28.000 |
| Ni | 19.000~22.000 |
| Fe | 其余 |
| 成分 | 质量分数/% |
|---|---|
| 正链烷烃 | 17.07 |
| 异链烷烃 | 53.47 |
| 环烷烃 | 27.78 |
| 烯烃 | 1.30 |
| 芳烃 | 0.37 |
Table 2 Physical parameters of light naphtha
| 成分 | 质量分数/% |
|---|---|
| 正链烷烃 | 17.07 |
| 异链烷烃 | 53.47 |
| 环烷烃 | 27.78 |
| 烯烃 | 1.30 |
| 芳烃 | 0.37 |
| 参数 | 数值 |
|---|---|
| 裂解压力 | 0.1 MPa |
| 热裂解温度 | 850℃ |
| 石脑油流量 | 2 ml/min |
| 水流量 | 0.7 ml/min |
| 水油比 | 0.5 |
Table 3 Parameters of thermal cracking experiment
| 参数 | 数值 |
|---|---|
| 裂解压力 | 0.1 MPa |
| 热裂解温度 | 850℃ |
| 石脑油流量 | 2 ml/min |
| 水流量 | 0.7 ml/min |
| 水油比 | 0.5 |
| 样品 | 3 h结焦速率/(10-3 mg/(mm2·h)) | 3 h结焦抑制率/% | 5 h结焦速率/(10-3 mg/(mm2·h)) | 5 h结焦抑制率/% |
|---|---|---|---|---|
| 空白氧化试样 | 19.10 | 0 | 15.00 | 0 |
| 涂层试样 | 4.62 | 75.84 | 4.33 | 74.22 |
Table 4 Results of coking tests at different cracking time
| 样品 | 3 h结焦速率/(10-3 mg/(mm2·h)) | 3 h结焦抑制率/% | 5 h结焦速率/(10-3 mg/(mm2·h)) | 5 h结焦抑制率/% |
|---|---|---|---|---|
| 空白氧化试样 | 19.10 | 0 | 15.00 | 0 |
| 涂层试样 | 4.62 | 75.84 | 4.33 | 74.22 |
| 样品 | ΓD1/cm-1 | ΓD2/cm-1 | ΓD3/cm-1 | ΓD4/cm-1 | ΓG/cm-1 | ID1/IG | ID3/IG |
|---|---|---|---|---|---|---|---|
| 涂层试样 | 114.51 | 50.10 | 183.52 | 183.74 | 48.93 | 3.58 | 2.80 |
| 空白氧化试样 | 79.51 | 52.94 | 211.04 | 257.28 | 63.01 | 1.36 | 1.55 |
Table 5 Fitting results of Raman spectra of coke deposits
| 样品 | ΓD1/cm-1 | ΓD2/cm-1 | ΓD3/cm-1 | ΓD4/cm-1 | ΓG/cm-1 | ID1/IG | ID3/IG |
|---|---|---|---|---|---|---|---|
| 涂层试样 | 114.51 | 50.10 | 183.52 | 183.74 | 48.93 | 3.58 | 2.80 |
| 空白氧化试样 | 79.51 | 52.94 | 211.04 | 257.28 | 63.01 | 1.36 | 1.55 |
| 1 | Bukhovko M P, Yang L, Li L W, et al. Gasification of radical coke with steam and steam-hydrogen mixtures over manganese-chromium oxides[J]. Industrial & Engineering Chemistry Research, 2020, 59(23): 10813-10822. |
| 2 | Amghizar I, Vandewalle L A, van Geem K M, et al. New trends in olefin production[J]. Engineering, 2017, 3(2): 171-178. |
| 3 | Xiao S F, Wang J L, Huang C P, et al. Failure analysis of convection section tube in an ethylene cracking furnace due to metal dusting[J]. Engineering Failure Analysis, 2023, 154: 107642. |
| 4 | Pourabdollah K, Khoshbin R, Moghaddam M A, et al. Predictive modeling of coke formation in ethylbenzene cracking on 304 H austenitic steel surface using response surface methodology (RSM)[J]. Chemical Engineering Research and Design, 2024, 202: 191-207. |
| 5 | Kucora I, Paunjoric P, Tolmac J, et al. Coke formation in pyrolysis furnaces in the petrochemical industry[J]. Petroleum Science and Technology, 2017, 35(3): 213-221. |
| 6 | 屈笑雨, 刘京雷, 徐宏, 等. 25Cr35NiNb合金表面Al-Si-Cr涂层抑制结焦性能[J]. 化工学报, 2015, 66(3): 1059-1065. |
| Qu X Y, Liu J L, Xu H, et al. Anti-coking characteristics of Al-Si-Cr coating on 25Cr35NiNb alloy[J]. CIESC Journal, 2015, 66(3): 1059-1065. | |
| 7 | Symoens S H, Olahova N, Muñoz Gandarillas A E, et al. State-of-the-art of coke formation during steam cracking: anti-coking surface technologies[J]. Industrial & Engineering Chemistry Research, 2018, 57(48): 16117-16136. |
| 8 | Kwon H T, Bukhovko M P, Mahamulkar S, et al. Sol-gel derived CeO2/α-Al2O3 bilayer thin film as an anti-coking barrier and its catalytic coke oxidation performance[J]. AIChE Journal, 2018, 64(11): 4019-4026. |
| 9 | 王志远, 丁旭东, 王博研, 等. 硫化物和硫/磷化合物的添加方式对石脑油热裂解结焦影响的研究[J]. 化工学报, 2020, 71(11): 5320-5336. |
| Wang Z Y, Ding X D, Wang B Y, et al. Addition methods of sulfur and sulfur/phosphorus-based compounds on coking behavior during thermal cracking of naphtha[J]. CIESC Journal, 2020, 71(11): 5320-5336. | |
| 10 | Panjapornpon C, Rochpuang C, Bardeeniz S, et al. Machine learning approach with a posteriori-based feature to predict service life of a thermal cracking furnace with coking deposition[J]. Results in Engineering, 2024, 22: 102349. |
| 11 | Guan Y T, Zhang Y J, Zhang Z L, et al. Band gap regulation of LaFeO3 via doping Sr for efficient conversion of coke and steam[J]. Ceramics International, 2024, 50(12): 21526-21537. |
| 12 | Xiong H H, Liu J L, Zhang Y J, et al. Anti-coking performance of Al/Si/Cr/Ce ceramic coating during naphtha steam cracking applied on Cr25Ni35Nb alloy[J]. Chemical Engineering Research and Design, 2023, 194: 756-767. |
| 13 | Bao B B, Liu J L, Xu H, et al. Insight into a high temperature selective oxidation of HP40 alloy under a H2-H2O environment[J]. RSC Advances, 2017, 7(14): 8589-8597. |
| 14 | Bukhovko M P, Yang L, Li L W, et al. Anticoking performance of electrodeposited Mn/MnO surface coating on Fe-Ni-Cr alloy during steam cracking[J]. ACS Engineering Au, 2021, 1(1): 73-84. |
| 15 | 梁贻景, 马岩, 卢展烽, 等. La1- x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778. |
| Liang Y J, Ma Y, Lu Z F, et al. Experimental investigation on the anti-coking performance of La1- x Sr x MnO3 perovskite coating[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1769-1778. | |
| 16 | 栾小建, 徐宏, 王志远, 等. SiO2/S涂层和硫磷抑制剂的抑制结焦性能研究[J]. 石油炼制与化工, 2011, 42(5): 75-80. |
| Luan X J, Xu H, Wang Z Y, et al. Research on the coking inhibition performance of SiO2/S coating and sulfur/phosphorus containing coking inhibitor[J]. Petroleum Processing and Petrochemicals, 2011, 42(5): 75-80. | |
| 17 | Wang B, Gong X L, Zhang Z D, et al. Investigation on carburization during the repeated coking and decoking process[J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13051-13059. |
| 18 | Ali S A, Ahmad T. Treasure trove for efficient hydrogen evolution through water splitting using diverse perovskite photocatalysts[J]. Materials Today Chemistry, 2023, 29: 101387. |
| 19 | Halder S, Kumar R A, Maity R, et al. A tailored direct-to-indirect band structure transition in double perovskite oxides influences its photocatalysis efficiency[J]. Ceramics International, 2023, 49(5): 8634-8645. |
| 20 | Wang B, Wang S X, Liu B, et al. Oxide film prepared by selective oxidation of stainless steel and anti-coking behavior during n-hexane thermal cracking[J]. Surface and Coatings Technology, 2019, 378: 124952. |
| 21 | Jampaiah D, Velisoju V K, Devaiah D, et al. Flower-like Mn3O4/CeO2 microspheres as an efficient catalyst for diesel soot and CO oxidation: synergistic effects for enhanced catalytic performance[J]. Applied Surface Science, 2019, 473: 209-221. |
| 22 | Miao S, Chen S, Zeng J, et al. Synergistic effects between Mn and Co species in CO2 hydrogenation over xCo/MnO catalysts[J]. Fuel, 2024, 362: 130853. |
| 23 | Touahra F, Sehailia M, Halliche D, et al. (MnO/Mn3O4)-NiAl nanoparticles as smart carbon resistant catalysts for the production of syngas by means of CO2 reforming of methane: advocating the role of concurrent carbothermic redox looping in the elimination of coke[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21140-21156. |
| 24 | Müller D, Knoll C, Artner W, et al. Combining in situ X-ray diffraction with thermogravimetry and differential scanning calorimetry—an investigation of Co3O4, MnO2 and PbO2 for thermochemical energy storage[J]. Solar Energy, 2017, 153: 11-24. |
| 25 | Petric A, Ling H. Electrical conductivity and thermal expansion of spinels at elevated temperatures[J]. Journal of the American Ceramic Society, 2007, 90(5): 1515-1520. |
| 26 | Zhang G N, Xu Y H, Wu X Y, et al. Ultrathin ZnO coating layer to boost the electrochemical reaction kinetics of MnO cathode for advanced aqueous zinc-ion batteries[J]. Solid State Sciences, 2023, 146: 107371. |
| 27 | Oquab D, Xu N, Monceau D, et al. Subsurface microstructural changes in a cast heat resisting alloy caused by high temperature corrosion[J]. Corrosion Science, 2010, 52(1): 255-262. |
| 28 | Zhang Z B, Albright L F. Pretreatments of coils to minimize coke formation in ethylene furnaces[J]. Industrial & Engineering Chemistry Research, 2010, 49(4): 1991-1994. |
| 29 | Lu J M, Dreisinger D, Glück T. Manganese electrodeposition—A literature review[J]. Hydrometallurgy, 2014, 141: 105-116. |
| 30 | Sulcius A, Griskonis E, Kantminiene K, et al. Influence of different electrolysis parameters on electrodeposition of γ- and α-Mn from pure electrolytes—A review with special reference to Russian language literature[J]. Hydrometallurgy, 2013, 137: 33-37. |
| 31 | Xiao L, Wang S Y, Wang Y F, et al. High-capacity and self-stabilized manganese carbonate microspheres as anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25369-25378. |
| 32 | Zhang J, Lin J, Zeng Y B, et al. Morphological and structural evolution of MnO@C anode and its application in lithium-ion capacitors[J]. ACS Applied Energy Materials, 2019, 2(11): 8345-8358. |
| 33 | Tang W X, Yao M S, Deng Y Z, et al. Decoration of one-dimensional MnO2 with Co3O4 nanoparticles: a heterogeneous interface for remarkably promoting catalytic oxidation activity[J]. Chemical Engineering Journal, 2016, 306: 709-718. |
| 34 | Guo Y Y, Zheng L M, Lan J L, et al. MnO nanoparticles encapsulated in carbon nanofibers with sufficient buffer space for high-performance lithium-ion batteries[J]. Electrochimica Acta, 2018, 269: 624-631. |
| 35 | Stokłosa A. Point defects diagrams for pure and doped manganese oxide Mn1- δ O in the temperature range of 1173-1830 K[J]. Materials Chemistry and Physics, 2012, 134(2/3): 1136-1145. |
| 36 | Guan Y T, Zhang Y J, Zhang Z L, et al. Alkali metal and alkali earth metal-modified La-Fe-based perovskite catalyzed coke combustion[J]. Molecular Catalysis, 2024, 558: 114012. |
| 37 | Berbenni V, Marini A. Thermoanalytical (TGA-DSC) and high temperature X-ray diffraction (HT-XRD) study of the thermal decomposition processes in Li2CO3-MnO mixtures[J]. Journal of Analytical and Applied Pyrolysis, 2002, 64(1): 43-58. |
| 38 | Liu B B, Zhang Y B, Wang J, et al. A further investigation on the MnO2-Fe2O3 system roasted under CO-CO2 atmosphere[J]. Advanced Powder Technology, 2019, 30(2): 302-310. |
| 39 | Ilton E S, Post J E, Heaney P J, et al. XPS determination of Mn oxidation states in Mn (hydr)oxides[J]. Applied Surface Science, 2016, 366: 475-485. |
| 40 | Pawlyta M, Rouzaud J N, Duber S. Raman microspectroscopy characterization of carbon blacks: spectral analysis and structural information[J]. Carbon, 2015, 84: 479-490. |
| 41 | Morga R, Jelonek I, Kruszewska K, et al. Relationships between quality of coals, resulting cokes, and micro-Raman spectral characteristics of these cokes[J]. International Journal of Coal Geology, 2015, 144: 130-137. |
| 42 | Xie B S, Han H Z, Luo W. Pyrolysis coking performance of supercritical n-decane in additively manufacturing channel[J]. International Journal of Heat and Mass Transfer, 2024, 229: 125743. |
| 43 | Rantitsch G, Bhattacharyya A, Günbati A, et al. Microstructural evolution of metallurgical coke: evidence from Raman spectroscopy[J]. International Journal of Coal Geology, 2020, 227: 103546. |
| 44 | Sheng C D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324. |
| [1] | Meng YANG, Xiaoqian DING, Tao YU, Chang LIU, Chenglong TANG, Zuohua HUANG. Experimental and kinetic studies for the ignition characteristic of the green propellant of methane/nitrous oxide [J]. CIESC Journal, 2025, 76(3): 1221-1229. |
| [2] | Fang XU, Rui ZHANG, Da CUI, Qing WANG. Study of pyrolysis reaction mechanism of lignin revealed by ReaxFF-MD simulation [J]. CIESC Journal, 2025, 76(3): 1253-1263. |
| [3] | Guojia YAO, Zhi WANG, Ang SU, Dongge FENG, Hong TANG, Lingfang SUN. Investigation of the effect of air coefficient on the combustion characteristics of pulverized coal pre-pyrolysis [J]. CIESC Journal, 2025, 76(3): 1243-1252. |
| [4] | Zhengliang HUANG, Mingrui FENG, Qi SONG, Congjing REN, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Inhibitory effect of premixed feedstock on particle agglomeration in fluidized pyrolysis reaction of waste resin [J]. CIESC Journal, 2024, 75(9): 3094-3102. |
| [5] | Shuying WANG, Tao ZUO, Zhiwei SHI, Xiaoming FAN, Weixin ZHANG. Synthesis and sodium ion storage properties of cation exchange resin based mesoporous graphitic carbon [J]. CIESC Journal, 2024, 75(9): 3338-3347. |
| [6] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
| [7] | Yong DING, Wenjian LI, Zhaoyu CHEN, Lihui CAO, Xuanming LIU, Qiangqiang REN, Song HU, Jun XIANG. Aerobic pyrolysis kinetic and product characteristics of waste crystalline silicon photovo ltaic modules’ EVA [J]. CIESC Journal, 2024, 75(9): 3310-3319. |
| [8] | Xiaofeng HUANG, Zhaohui LIU, Fan YANG. Experimental investigation of high-density hydrocarbon fuel JP-10 on flow heat transfer and pyrolysis characteristics [J]. CIESC Journal, 2024, 75(8): 2917-2928. |
| [9] | Peiqi LI, Xuejiao CHEN, Boxiang WU, Rongpei JIANG, Chao YANG, Zhaohui LIU. Experimental study on radiometric density measurements of petroleum-based and coal-based rocket kerosene at high-parameters [J]. CIESC Journal, 2024, 75(7): 2422-2432. |
| [10] | Hongzhe YAO, Feiyu HUANG, Song YANG, Mei ZHONG, Zhenghua DAI. Kinetic modeling of the high-temperature rapid pyrolysis auto-reaction network of heavy oil [J]. CIESC Journal, 2024, 75(7): 2644-2655. |
| [11] | Huiyu CHAO, Zhenmin BAI, Hanqing HOU, Lizhi TIAN, Hong LI, Xiaoquan FANG, Xiaohua SHI. Thermodynamics analysis on liquid-phase synthesis of cyanuric acid [J]. CIESC Journal, 2024, 75(6): 2157-2165. |
| [12] | Xi WU, Bo SUN, Yindong LIU, Chuanlei QI, Kaiyi CHEN, Luhai WANG, Chong XU, Yongfeng LI. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries [J]. CIESC Journal, 2024, 75(4): 1270-1283. |
| [13] | Haowen LI, Hao LAN, Youdan ZHENG, Yonghui SUN, Zixin YANG, Qianshi SONG, Xiaohan WANG. Pyrolysis and coking behavior of typical liquid hydrocarbon fuels in hot pipe [J]. CIESC Journal, 2024, 75(2): 626-636. |
| [14] | Yun WU, Haifeng GONG. Carbonyl iron loaded TiO2 photocatalyst by hydrophobic modification for degradation of petroleum hydrocarbon pollutants in water [J]. CIESC Journal, 2024, 75(12): 4555-4562. |
| [15] | Maoxian WANG, Qidian SUN, Zhe FU, Fang HUA, Ye JI, Yi CHENG. Understanding pyrolysis process of polyethylene by combined method of molecular-level kinetic model with machine learning [J]. CIESC Journal, 2024, 75(11): 4320-4332. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||