CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2186-2197.DOI: 10.11949/0438-1157.20240994
• Separation engineering • Previous Articles Next Articles
Renze SHI1,2(
), Qiuyan DING1,2, Zhenjun YUAN3,4, Jian NA1,2, Jianhua LIU3,4, Shuhu GUO1,3,4, Xiong ZHAO1,3,4(
), Hong LI1,2, Xin GAO1,2(
)
Received:2024-09-03
Revised:2024-09-20
Online:2025-06-13
Published:2025-05-25
Contact:
Xiong ZHAO, Xin GAO
时任泽1,2(
), 丁秋燕1,2, 袁振军3,4, 那健1,2, 刘见华3,4, 郭树虎1,3,4, 赵雄1,3,4(
), 李洪1,2, 高鑫1,2(
)
通讯作者:
赵雄,高鑫
作者简介:时任泽(1998—),男,硕士研究生,a1120305060@163.com
基金资助:CLC Number:
Renze SHI, Qiuyan DING, Zhenjun YUAN, Jian NA, Jianhua LIU, Shuhu GUO, Xiong ZHAO, Hong LI, Xin GAO. Study on the purification technology of 4N electronic-grade diethoxymethylsilane[J]. CIESC Journal, 2025, 76(5): 2186-2197.
时任泽, 丁秋燕, 袁振军, 那健, 刘见华, 郭树虎, 赵雄, 李洪, 高鑫. 4N电子级二乙氧基甲基硅烷的纯化技术研究[J]. 化工学报, 2025, 76(5): 2186-2197.
Add to citation manager EndNote|Ris|BibTeX
| 名称 | 组分纯度/% | 乙醇含量/% | 氯离子含量/(mg/L) | 单个杂质含量/(μg/L) | 总金属离子杂质含量/(μg/L) |
|---|---|---|---|---|---|
| 电子级DEMS | ≥99.990 | ≤0.010 | ≤1.000 | ≤0.500 | ≤5.000 |
Table 1 Control standards for organic purity and impurity content of electronic grade DEMS
| 名称 | 组分纯度/% | 乙醇含量/% | 氯离子含量/(mg/L) | 单个杂质含量/(μg/L) | 总金属离子杂质含量/(μg/L) |
|---|---|---|---|---|---|
| 电子级DEMS | ≥99.990 | ≤0.010 | ≤1.000 | ≤0.500 | ≤5.000 |
| 序号 | 组分 | 沸点/℃ | 序号 | 组分 | 沸点/℃ |
|---|---|---|---|---|---|
| 1 | FeCl2 | 1023 | 8 | AlCl3 | 182 |
| 2 | FeCl3 | 316 | 9 | TiCl4 | 135 |
| 3 | CaCl2 | 1600 | 10 | PCl3 | 75 |
| 4 | NaCl | 1465 | 11 | POCl3 | 105 |
| 5 | KCl | 1420 | 12 | PCl5 | 160 |
| 6 | MgCl2 | 1412 | 13 | BCl3 | 12 |
| 7 | ZnCl2 | 732 | 14 | B2Cl4 | 55 |
Table 2 The composition and boiling point statistics of impurities in industrial DEMS
| 序号 | 组分 | 沸点/℃ | 序号 | 组分 | 沸点/℃ |
|---|---|---|---|---|---|
| 1 | FeCl2 | 1023 | 8 | AlCl3 | 182 |
| 2 | FeCl3 | 316 | 9 | TiCl4 | 135 |
| 3 | CaCl2 | 1600 | 10 | PCl3 | 75 |
| 4 | NaCl | 1465 | 11 | POCl3 | 105 |
| 5 | KCl | 1420 | 12 | PCl5 | 160 |
| 6 | MgCl2 | 1412 | 13 | BCl3 | 12 |
| 7 | ZnCl2 | 732 | 14 | B2Cl4 | 55 |
| 化合物 | 分子式 | CAS号 | 分子量 | 沸点/℃ |
|---|---|---|---|---|
| 二乙氧基甲基硅烷 | C5H14O2Si | 2031-62-1 | 134.25 | 98 |
| 甲基三乙氧基硅烷 | C7H18O3Si | 2031-67-6 | 178.30 | 141 |
| 四乙氧基硅烷 | C8H20O4Si | 78-10-4 | 208.33 | 168 |
| 乙醇 | C2H6O | 64-17-5 | 46.07 | 78 |
| 正己烷 | C6H14 | 110-54-3 | 86.18 | 69 |
Table 3 Boiling points of distillation system substances
| 化合物 | 分子式 | CAS号 | 分子量 | 沸点/℃ |
|---|---|---|---|---|
| 二乙氧基甲基硅烷 | C5H14O2Si | 2031-62-1 | 134.25 | 98 |
| 甲基三乙氧基硅烷 | C7H18O3Si | 2031-67-6 | 178.30 | 141 |
| 四乙氧基硅烷 | C8H20O4Si | 78-10-4 | 208.33 | 168 |
| 乙醇 | C2H6O | 64-17-5 | 46.07 | 78 |
| 正己烷 | C6H14 | 110-54-3 | 86.18 | 69 |
| 模型名称 | 1#塔参数 | 2#塔参数 | DEMS回收率/% | DEMS有机纯度/% | ||
|---|---|---|---|---|---|---|
| 塔板数 | 回流比 | 塔板数 | 回流比 | |||
| AD | 33 | 0.40 | 20 | 15.85 | 95 | 99.968 |
| VD* | 29 | 0.25 | 90 | 8.00 | 84 | 99.990 |
| VAD | 37 | 2.34 | 25 | 0.25 | 89 | 99.568 |
| VAD* | 65 | 10.00 | 13 | 1.10 | 91 | 99.993 |
Table 4 Comparison of four model parameters
| 模型名称 | 1#塔参数 | 2#塔参数 | DEMS回收率/% | DEMS有机纯度/% | ||
|---|---|---|---|---|---|---|
| 塔板数 | 回流比 | 塔板数 | 回流比 | |||
| AD | 33 | 0.40 | 20 | 15.85 | 95 | 99.968 |
| VD* | 29 | 0.25 | 90 | 8.00 | 84 | 99.990 |
| VAD | 37 | 2.34 | 25 | 0.25 | 89 | 99.568 |
| VAD* | 65 | 10.00 | 13 | 1.10 | 91 | 99.993 |
| 技术指标 | 要求 | 实验结果 | 模拟结果 |
|---|---|---|---|
| 有机纯度/% | ≥99.990 | 99.993 | 99.993 |
| 乙醇含量/% | ≤0.010 | 0.007 | 0.002 |
| 氯离子含量/(mg/L) | ≤1.000 | 未检出 | — |
| 单个杂质含量/(μg/L) | ≤0.500 | 0.322 | — |
| 总金属离子杂质含量/(μg/L) | ≤5.000 | 1.240 | — |
Table 5 Technical specifications for 4N DEMS prepared by the as-proposed process
| 技术指标 | 要求 | 实验结果 | 模拟结果 |
|---|---|---|---|
| 有机纯度/% | ≥99.990 | 99.993 | 99.993 |
| 乙醇含量/% | ≤0.010 | 0.007 | 0.002 |
| 氯离子含量/(mg/L) | ≤1.000 | 未检出 | — |
| 单个杂质含量/(μg/L) | ≤0.500 | 0.322 | — |
| 总金属离子杂质含量/(μg/L) | ≤5.000 | 1.240 | — |
| 1 | 常欣, 万烨, 赵雄, 等. 先进硅基前驱体的应用研究与技术进展[J]. 半导体技术, 2020, 45(6): 409-418. |
| Chang X, Wan Y, Zhao X, et al. Application research and technology progress on advanced silicon-based precursors[J]. Semiconductor Technology, 2020, 45(6): 409-418. | |
| 2 | Cheng Y L, We B J, O’Neil M L, et al. The effect of deposition temperature on the structure and electrical properties of low-k film using diethoxymethylsilane (DEMS) prepared by plasma enhanced chemical vapor deposition[J]. Thin Solid Films, 2007, 516(2/3/4): 438-443. |
| 3 | Cheng Y, Wang Y, Hwang G, et al. Effect of deposition temperature and oxygen flow rate on properties of low dielectric constant SiCOH film prepared by plasma enhanced chemical vapor deposition using diethoxymethylsilane[J]. Surface and Coatings Technology, 2006, 200(10): 3134-3139. |
| 4 | Cheng L Y, Lu S Y, Chiu J T. Comparative study of low dielectric constant material deposited using different precursors[J]. Advanced Materials Research, 2011, 1266(233/234/235): 2480-2485. |
| 5 | Thanh N B. Process for the preparation of hydrido organooxysilanes: EP93305178[P]. 1994-01-12. |
| 6 | Peter F, Reiner G, Hans-joachim V. Method for the continuous preparation of alkoxysilanes: US53858983A[P]. 1985-03-19. |
| 7 | Hans-Joachim K, Hans-Joachim V. Prcess for the continuous esterification of chlorosilanes: US19750584271[P]. 1977-08-02. |
| 8 | Marvin B H. Prcess for preparation of organooxysilanes: US05374761A[P]. 1994-04-29. |
| 9 | Makoto N, Hiraki H. Process for producing alkoxysilanes: US4851558A[P]. 1989-07-25. |
| 10 | 钱浩. 液体氯硅烷中硼磷杂质高效分离工艺[D]. 天津: 天津大学, 2016. |
| Qian H. Efficient separation process of boron and phosphorus impurities in liquid chlorosilane[D]. Tianjin: Tianjin University, 2016. | |
| 11 | 李闻笛, 李鑫钢, 廉景燕, 等. 二氯二氢硅精馏提纯方案的研究与优化[J]. 化工进展, 2011, 30(S1): 777-779. |
| Li W D, Li X G, Lian J Y, et al. Study and optimization of rectification and purification scheme of dichlorosilane[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 777-779. | |
| 12 | 曹军. 反应精馏技术用于硅烷生产工艺的研究[J]. 云南化工, 2020, 47(3): 65-67. |
| Cao J. Study on the application of reactive distillation technology in silane production process[J]. Yunnan Chemical Technology, 2020, 47(3): 65-67. | |
| 13 | Zhao X, Hou Z K, Guo S H, et al. Photocatalytic reactive distillation—a novel process intensification approach for purification of electronic-grade silicon tetrachloride[J]. Chemical Engineering Journal, 2023, 475: 145947. |
| 14 | Wan Y, Guo W H, Xiao J, et al. Integrated UV-based photo microreactor-distillation technology toward process intensification of continuous ultra-high-purity electronic-grade silicon tetrachloride manufacture[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2248-2255. |
| 15 | Sugimura S, Matsuoto K, Matsuoto Y, et al. Method for purifying chlorosilane: US20120148471[P]. 2012-06-14. |
| 16 | 陈刚, 凌礼照, 朱学锋, 等. 一种电子级硝酸的制备方法: 117566700A[P]. 2024-02-20. |
| Chen G, Ling L Z, Zhu X F, et al. Preparation method of electronic grade nitric acid: 117566700A[P]. 2024-02-20. | |
| 17 | 王佳佳, 陈润泽, 李欣, 等. 一种电子级六氟丁二烯的纯化方法: 117384009A[P]. 2024-01-12. |
| Wang J J, Chen R Z, Li X, et al. Purification method of electronic grade hexafluorobutadiene: 117384009A[P]. 2024-01-12. | |
| 18 | 梅厄加, 钱德勒. 用作化学气相沉积的前体的有机硅组合物的纯化方法: 101250690[P]. 2008-08-27. |
| Mejia S G, Chandler K A. Method for purifying organosilicon compositions used as precursors for chemical vapor deposition: 101250690[P]. 2008-08-27. | |
| 19 | Ritscher J S, Turner S M. Acidic halide neutralization in alkoxysilanes: US5210254[P]. 1993-05-11. |
| 20 | Wassmann-Wilken S, Werner C, Wilken J, et al. Methods of refining silane compounds: US20040938809[P]. 2005-03-17. |
| 21 | 杨敏, 陈德义, 宛志文, 等. 有机硅组合物及其应用: 115572307A[P]. 2023-01-06. |
| Yang M, Chen D Y, Wan Z W, et al. Silicone composition and use thereof: 115572307A[P]. 2023-01-06. | |
| 22 | Guo W H, Guo S H, Zhao X, et al. Simultaneous distillation-extraction for manufacturing ultra-high-purity electronic-grade octamethylcyclotetrasiloxane (D4)[J]. Journal of Industrial and Engineering Chemistry, 2022, 109: 275-286. |
| 23 | 余淑娴, 应水良. 甲基二乙氧基硅烷的合成[J]. 南昌大学学报(理科版), 2005, 29(2): 146-150. |
| Yu S X, Ying S L. Synthesizing methods of methyldiethoxysilane[J]. Journal of Nanchang University (Natural Science), 2005, 29(2): 146-150. | |
| 24 | 李瑶, 汪瑜华, 佘慧玲. 甲基二乙氧基硅烷的合成研究[J]. 杭州化工, 2006, 36(1): 12-13. |
| Li Y, Wang Y H, She H L. A study of methyldiethoxysilane synthesis[J]. Hangzhou Chemical Industry, 2006, 36(1): 12-13. | |
| 25 | 钟伟. 萃取精馏分离纯化二甲基二氯硅烷的研究[D]. 青岛: 青岛科技大学, 2012. |
| Zhong W. Study on separation and purification of dimethyldichlorosilane by extractive distillation[D]. Qingdao: Qingdao University of Science & Technology, 2012. | |
| 26 | Li H, Sun G L, Li D Y, et al. Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid[J]. Green Energy & Environment, 2021, 6(3): 329-338. |
| 27 | 宋高鹏. 共沸精馏分离乙二醇-丙二醇-丁二醇物系的研究[D]. 天津: 天津大学, 2007. |
| Song G P. Study on separation of ethylene glycol-propylene glycol-butanediol system by azeotropic distillation[D]. Tianjin: Tianjin University, 2007. | |
| 28 | Han Z W, Ren Y Y, Li H, et al. Simultaneous extractive and azeotropic distillation separation process for production of PODEn from formaldehyde and methylal[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5252-5260. |
| 29 | 廖永忠, 鲍坚斌, 韩世钧. 共沸点的测定[J]. 石油化工, 1991, 20(3): 171-175. |
| Liao Y Z, Bao J B, Han S J. Measurement of azeotropesic point[J]. Petrochemical Technology, 1991, 20(3): 171-175. | |
| 30 | 隋振英, 邹东雷. 共沸精馏中共沸剂的选择[J]. 化学工程师, 1996, 10(3): 27-29. |
| Sui Z Y, Zou D L. Selection of azeotropic agent in azeotropic distillation[J]. Chemical Engineer, 1996, 10(3): 27-29. | |
| 31 | 刘光永. 化工开发实验技术[M]. 天津: 天津大学出版社, 1994: 232-235. |
| Liu G Y. Experimental Technology of Chemical Development[M]. Tianjin: Tianjin University Press, 1994: 232-235. | |
| 32 | 姜标, 张黎明, 陈君, 等. 一种电子级八甲基环四硅氧烷的提纯方法: 103788124A[P]. 2014-05-14. |
| Jiang B, Zhang L M, Chen J, et al. Purification method of electronic grade octamethylcyclotetrasiloxan: 103788124A[P]. 2014-05-14. | |
| 33 | 毕明洋. 基于络合吸附法除四氯化硅中痕量磷杂质的研究[D]. 天津: 天津大学, 2020. |
| Bi M Y. Study on removal of trace phosphorus impurities from silicon tetrachloride based on complex adsorption method[D]. Tianjin: Tianjin University, 2020. |
| [1] | Liao HE, Jun LI, Mengshu GAO, Dongyang LIU, Yuhao ZHANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on aromatic hydrocarbons separation from petroleum hydrocarbons [J]. CIESC Journal, 2025, 76(5): 1909-1926. |
| [2] | Zehai XU, Chao LIU, Guoliang ZHANG. Hydrophobic pervaporation membranes on polymer substrate for solvent recovery [J]. CIESC Journal, 2025, 76(5): 2055-2069. |
| [3] | Pengtao GUO, Ting WANG, Bo XUE, Yunpan YING, Dahuan LIU. Ultramicroporous MOF with multiple adsorption sites for CH4/N2 separation [J]. CIESC Journal, 2025, 76(5): 2304-2312. |
| [4] | Zijuan LI, Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU, Faquan YU. Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane [J]. CIESC Journal, 2025, 76(5): 2348-2357. |
| [5] | Jingxian HUA, Yurong LUO, Yawei GU, Tingting WU, Yichang PAN, Weihong XING. Preparation of ultra-thin oriented ZIF-8 membrane for efficient ethylene/ethane separation [J]. CIESC Journal, 2025, 76(5): 2209-2218. |
| [6] | Yan LI, Meili LEI, Xingang LI. Regulation strategy of sequential simulated moving bed structure based on separation performance [J]. CIESC Journal, 2025, 76(5): 2219-2229. |
| [7] | Yaqi BA, Tao WU, Andi DI, Anhui LU. Progress in porous carbons for efficient separation of gaseous light hydrocarbon [J]. CIESC Journal, 2025, 76(5): 2136-2157. |
| [8] | Peng TAN, Xuemei LI, Xiaoqin LIU, Linbing SUN. Study on magnetically responsive composite materials based on flexible MOFs and their propylene adsorption performance [J]. CIESC Journal, 2025, 76(5): 2230-2240. |
| [9] | Xinchen XIANG, Dan LU, Ying ZHAO, Zhikan YAO, Ruiqiang KOU, Danjun ZHENG, Zhijun ZHOU, Lin ZHANG. Preparation of highly positively charged NF membranes with surface quaternization modification and Li+/Mg2+ separation performance [J]. CIESC Journal, 2025, 76(5): 2377-2386. |
| [10] | Jiashun LI, Wang LI, Zuzeng QIN, Tongming SU, Xinling XIE, Hongbing JI. Preparation of polyimide-reinforced lignocellulosic nanofibril aerogel and its oil-water separation performance [J]. CIESC Journal, 2025, 76(5): 2169-2185. |
| [11] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
| [12] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [13] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [14] | Yanan YANG, Shengran CHANG, Songlin XUE, Jianming PAN, Weihong XING. Progress of research on photo- and electric-driven to promote uranium and lithium extraction from seawater [J]. CIESC Journal, 2025, 76(5): 1927-1942. |
| [15] | Zibo YANG, Youfa WANG, Hansong YUE, Shuangjie YUAN, Fujiang GENG, Qingqing LI, De AO, Bin LI, Mao YE, Zhenjie GU, Zhihua QIAO. Recent progress of MOF glasses based gas separation membrane [J]. CIESC Journal, 2025, 76(5): 2158-2168. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||