CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 3104-3114.DOI: 10.11949/0438-1157.20240972
• Process safety • Previous Articles Next Articles
Received:2024-08-29
Revised:2024-12-23
Online:2025-07-09
Published:2025-06-25
Contact:
Xuanyi ZHOU
通讯作者:
周晅毅
作者简介:王富玉(1996—),男,博士研究生,wfy@tongji.edu.cn
基金资助:CLC Number:
Fuyu WANG, Xuanyi ZHOU. Leakage estimation in a chemical tank farm with unsteady adjoint equation and genetic algorithm[J]. CIESC Journal, 2025, 76(6): 3104-3114.
王富玉, 周晅毅. 结合非定常伴随方程和遗传算法的化工区反演[J]. 化工学报, 2025, 76(6): 3104-3114.
Add to citation manager EndNote|Ris|BibTeX
| 项目 | 设置 | |
|---|---|---|
| 仿真模型 | 计算域 | 21.75H (x)×12.8H (y)×6H (z) |
| 网格数 | 1288769个 | |
| 求解设置 | 湍流模型 | 标准k-ε模型[ |
| 速度-压力耦合 | 压力耦合方程组的半隐式方法(semi-implicit method for pressure-linked equations, SIMPLE) | |
| 对流项离散格式 | 二阶迎风格式 | |
| 扩散项离散格式 | 二阶迎风格式 | |
| 近壁面处理 | 标准壁面函数 | |
| 边界条件 | 入口 | 速度入口[ |
| 出口 | 自由出流[ | |
| 顶面和侧面 | 对称 | |
| 地面和储罐 | 无滑移壁面[ | |
| 探测器(求解伴随方程) | 源强度为1[ | |
Table 1 Solver settings and boundary conditions
| 项目 | 设置 | |
|---|---|---|
| 仿真模型 | 计算域 | 21.75H (x)×12.8H (y)×6H (z) |
| 网格数 | 1288769个 | |
| 求解设置 | 湍流模型 | 标准k-ε模型[ |
| 速度-压力耦合 | 压力耦合方程组的半隐式方法(semi-implicit method for pressure-linked equations, SIMPLE) | |
| 对流项离散格式 | 二阶迎风格式 | |
| 扩散项离散格式 | 二阶迎风格式 | |
| 近壁面处理 | 标准壁面函数 | |
| 边界条件 | 入口 | 速度入口[ |
| 出口 | 自由出流[ | |
| 顶面和侧面 | 对称 | |
| 地面和储罐 | 无滑移壁面[ | |
| 探测器(求解伴随方程) | 源强度为1[ | |
| 源 | ||||
|---|---|---|---|---|
| S1 | 1.12/1.12/0.04/0% | 1.54/1.55/0.04/0% | 0.04/0.06/0.03/21.25% | 3/2.7/0.6/0.9% |
| S2 | 1.02/1.06/0.06/0.17% | 1.44/1.42/0.02/0.02% | 0.01/0.01/0.01/5.08% | 3/3.7/0.9/3.9% |
| S3 | 1.07/1.08/0.03/0.01% | 1.21/1.21/0.01/0% | 0.05/0.05/0.01/0.50% | 3/4.4/0.5/15.3% |
| S4 | 1.02/1.06/0.07/0.12% | 1.12/1.14/0.01/0.03% | 0.02/0.01/0.01/12.26% | 3/4.1/0.8/10.5% |
| S5 | 1.14/1.14/0.02/0% | 1.07/1.08/0.02/0.01% | 0.01/0.02/0.02/26.23% | 3/4.2/1.0/11.4% |
| S6 | 1.35/1.36/0.07/0% | 1.49/1.50/0.04/0% | 0.03/0.03/0/1.20% | 3/2.2/1.0/9.1% |
| S7 | 1.23/1.21/0.08/0.03% | 1.44/1.42/0.04/0.02% | 0.01/0/0/100+ | 3/4.0/1.4/9.0% |
| S8 | 1.21/1.21/0.01/0% | 1.28/1.27/0.01/0% | 0.10/0.11/0.03/1.94% | 3/3.4/0.8/1.5% |
| S9 | 1.28/1.27/0.14/0.02% | 1.21/1.21/0.09/0% | 0.02/0.02/0.02/3.46% | 3/3.3/0.8/1.1% |
| S10 | 1.23/1.22/0.09/0.01% | 1.12/1.13/0.05/0.01% | 0.05/0.05/0/0.06% | 3/3.2/0.5/0.3% |
Table 2 Estimated results (t*=70)
| 源 | ||||
|---|---|---|---|---|
| S1 | 1.12/1.12/0.04/0% | 1.54/1.55/0.04/0% | 0.04/0.06/0.03/21.25% | 3/2.7/0.6/0.9% |
| S2 | 1.02/1.06/0.06/0.17% | 1.44/1.42/0.02/0.02% | 0.01/0.01/0.01/5.08% | 3/3.7/0.9/3.9% |
| S3 | 1.07/1.08/0.03/0.01% | 1.21/1.21/0.01/0% | 0.05/0.05/0.01/0.50% | 3/4.4/0.5/15.3% |
| S4 | 1.02/1.06/0.07/0.12% | 1.12/1.14/0.01/0.03% | 0.02/0.01/0.01/12.26% | 3/4.1/0.8/10.5% |
| S5 | 1.14/1.14/0.02/0% | 1.07/1.08/0.02/0.01% | 0.01/0.02/0.02/26.23% | 3/4.2/1.0/11.4% |
| S6 | 1.35/1.36/0.07/0% | 1.49/1.50/0.04/0% | 0.03/0.03/0/1.20% | 3/2.2/1.0/9.1% |
| S7 | 1.23/1.21/0.08/0.03% | 1.44/1.42/0.04/0.02% | 0.01/0/0/100+ | 3/4.0/1.4/9.0% |
| S8 | 1.21/1.21/0.01/0% | 1.28/1.27/0.01/0% | 0.10/0.11/0.03/1.94% | 3/3.4/0.8/1.5% |
| S9 | 1.28/1.27/0.14/0.02% | 1.21/1.21/0.09/0% | 0.02/0.02/0.02/3.46% | 3/3.3/0.8/1.1% |
| S10 | 1.23/1.22/0.09/0.01% | 1.12/1.13/0.05/0.01% | 0.05/0.05/0/0.06% | 3/3.2/0.5/0.3% |
| [11] | Li F, Liu X R, Liu J X, et al. Solutions to mitigate the impact of measurement noise on the air pollution source strength estimation in a multi-zone building[J]. Building Simulation, 2020, 13(6): 1329-1337. |
| [12] | Pudykiewicz J A. Application of adjoint tracer transport equations for evaluating source parameters[J]. Atmospheric Environment, 1998, 32(17): 3039-3050. |
| [13] | Hutchinson M, Oh H, Chen W H. A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors[J]. Information Fusion, 2017, 36: 130-148. |
| [14] | Jia H Y, Kikumoto H. Line source estimation of environmental pollutants using super-Gaussian geometry model and Bayesian inference[J]. Environmental Research, 2021, 194: 110706. |
| [15] | Liu X, Zhai Z. Location identification for indoor instantaneous point contaminant source by probability-based inverse computational fluid dynamics modeling[J]. Indoor Air, 2008, 18(1): 2-11. |
| [16] | Wang H D, Lu S, Cheng J J, et al. Inverse modeling of indoor instantaneous airborne contaminant source location with adjoint probability-based method under dynamic airflow field[J]. Building and Environment, 2017, 117: 178-190. |
| [17] | Xue F, Kikumoto H, Li X F, et al. Bayesian source term estimation of atmospheric releases in urban areas using LES approach[J]. Journal of Hazardous Materials, 2018, 349: 68-78. |
| [18] | Ma D L, Deng J Q, Zhang Z X. Comparison and improvements of optimization methods for gas emission source identification[J]. Atmospheric Environment, 2013, 81: 188-198. |
| [19] | Li H, Zhang J W. Fast source term estimation using the PGA-NM hybrid method[J]. Engineering Applications of Artificial Intelligence, 2017, 62: 68-79. |
| [20] | Ma D L, Tan W, Wang Q S, et al. Application and improvement of swarm intelligence optimization algorithm in gas emission source identification in atmosphere[J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 262-271. |
| [21] | 朱建杰, 周晅毅, 顾明. 基于贝叶斯推断的时变流场下污染源反演[J]. 同济大学学报(自然科学版), 2022, 50(6): 802-811. |
| Zhu J J, Zhou X Y, Gu M. Source inversion in time-variant flow field based on Bayesian inference[J]. Journal of Tongji University (Natural Science), 2022, 50(6): 802-811. | |
| [22] | 郭少冬, 杨锐, 苏国锋, 等. 基于伴随方程和MCMC方法的室内污染源反演模型研究[J]. 应用基础与工程科学学报, 2010, 18(4): 695-704. |
| Guo S D, Yang R, Su G F, et al. Investigation of the inversion modeling for indoor contaminant source based on the adjoint equation and MCMC method[J]. Journal of Basic Science and Engineering, 2010, 18(4): 695-704. | |
| [23] | Guo S D, Yang R, Zhang H, et al. Source identification for unsteady atmospheric dispersion of hazardous materials using Markov Chain Monte Carlo method[J]. International Journal of Heat and Mass Transfer, 2009, 52(17/18): 3955-3962. |
| [24] | Feng L, Ong Y S, Gupta A. Genetic algorithm and its advances in embracing memetics[M]//Evolutionary and Swarm Intelligence Algorithms. Cham: Springer International Publishing, 2018: 61-84. |
| [25] | Wang F Y, Zhou X Y, Kikumoto H. Improvement of optimization methods in indoor time-variant source parameters estimation combining unsteady adjoint equations and flow field information[J]. Building and Environment, 2022, 226: 109710. |
| [26] | Wang F Y, Zhou X Y, Kikumoto H, et al. Detector configuration optimization based on wind tunnel tests using normalized adjoint concentration gradient for urban spatial source parameters estimation[J]. Building and Environment, 2024, 248: 111094. |
| [27] | Wang Y, Huang H, Huang L D, et al. Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions[J]. Engineering Applications of Artificial Intelligence, 2018, 75: 102-113. |
| [28] | He Z Z, Qi H, Yao Y C, et al. Inverse estimation of the particle size distribution using the Fruit Fly Optimization Algorithm[J]. Applied Thermal Engineering, 2015, 88: 306-314. |
| [29] | Tominaga Y, Mochida A, Yoshie R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1749-1761. |
| [30] | Huang X T, Huang Y D, Xu N, et al. Thermal effects on the dispersion of rooftop stack emission in the wake of a tall building within suburban areas by wind-tunnel experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 205: 104295. |
| [31] | Cui P Y, Zhang Y, Chen W Q, et al. Wind-tunnel studies on the characteristics of indoor/outdoor airflow and pollutant exchange in a building cluster[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 214: 104645. |
| [32] | Wang X M, Tan Y F, Zhang T T, et al. Diffusion process simulation and ventilation strategy for small-hole natural gas leakage in utility tunnels[J]. Tunnelling and Underground Space Technology, 2020, 97: 103276. |
| [1] | 金伟其, 吴月荣, 王霞, 等. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
| Jin W Q, Wu Y R, Wang X, et al. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks[J]. CIESC Journal, 2023, 74(S1): 32-44. | |
| [2] | 贾梅生, 陈国华, 胡昆. 化工园区多米诺事故风险评价与防控技术综述[J]. 化工进展, 2017, 36(4): 1534-1543. |
| Jia M S, Chen G H, Hu K. Review of risk assessment and pre-control of Domino effect in Chemical Industry Park[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1534-1543. | |
| [3] | Feng Q L, Zhang C X, Lu J Y, et al. Source localization in dynamic indoor environments with natural ventilation: an experimental study of a particle swarm optimization-based multi-robot olfaction method[J]. Building and Environment, 2019, 161: 106228. |
| [4] | Bourne J R, Pardyjak E R, Leang K K. Coordinated Bayesian-based bioinspired plume source term estimation and source seeking for mobile robots[J]. IEEE Transactions on Robotics, 2019, 35(4): 967-986. |
| [5] | 周晅毅, 王富玉, 杨流阔, 等. 基于Nelder-Mead算法的机器人主动嗅觉室内时变污染源定位[J]. 同济大学学报(自然科学版), 2022, 50(6): 812-820. |
| Zhou X Y, Wang F Y, Yang L K, et al. Locating indoor time-variant contaminant sources based on nelder-mead algorithm using robot active olfaction method[J]. Journal of Tongji University (Natural Science), 2022, 50(6): 812-820. | |
| [6] | Keats A, Yee E, Lien F S. Bayesian inference for source determination with applications to a complex urban environment[J]. Atmospheric Environment, 2007, 41(3): 465-479. |
| [7] | Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation[M]. Beijing: Science Press, 2005. |
| [8] | Jia H Y, Kikumoto H. Sensor configuration optimization based on the entropy of adjoint concentration distribution for stochastic source term estimation in urban environment[J]. Sustainable Cities and Society, 2022, 79: 103726. |
| [9] | Cai H, Li X T, Chen Z L, et al. Rapid identification of multiple constantly-released contaminant sources in indoor environments with unknown release time[J]. Building and Environment, 2014, 81: 7-19. |
| [10] | Ma D L, Zhang Z X. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere[J]. Journal of Hazardous Materials, 2016, 311: 237-245. |
| [33] | Cui P Y, Chen W Q, Wang J Q, et al. Numerical studies on issues of Re-independence for indoor airflow and pollutant dispersion within an isolated building[J]. Building Simulation, 2022, 15(7): 1259-1276. |
| [34] | Ma H X, Zhou X Y, Tominaga Y, et al. CFD simulation of flow fields and pollutant dispersion around a cubic building considering the effect of plume buoyancies[J]. Building and Environment, 2022, 208: 108640. |
| [35] | Jia H Y, Kikumoto H. Source term estimation in complex urban environments based on Bayesian inference and unsteady adjoint equations simulated via large eddy simulation[J]. Building and Environment, 2021, 193: 107669. |
| [36] | Wu J S, Liu Z, Yuan S Q, et al. Source term estimation of natural gas leakage in utility tunnel by combining CFD and Bayesian inference method[J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104328. |
| [37] | Tominaga Y, Stathopoulos T. CFD simulations of near-field pollutant dispersion with different plume buoyancies[J]. Building and Environment, 2018, 131: 128-139. |
| [38] | Ma D L, Tan W, Wang Q S, et al. Location of contaminant emission source in atmosphere based on optimal correlated matching of concentration distribution[J]. Process Safety and Environmental Protection, 2018, 117: 498-510. |
| [1] | Jianbin PENG, Ming LI, Junlong XIE, Jianye CHEN. Numerical investigation of liquid hydrogen leakage and explosion overpressure at liquid hydrogen receiving terminal [J]. CIESC Journal, 2025, 76(S1): 453-461. |
| [2] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [3] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [4] | Lin LI, Mingmei WANG, Erwei SONG, Wenwen WANG, Yaochang ZHANG, Erqiang WANG. Thermodynamic analysis and optimization of isoprene/n-pentane separation process [J]. CIESC Journal, 2025, 76(6): 2549-2558. |
| [5] | Yiyun ZHANG, Hengzhi CHEN, Yang LI, Chang'an MU, Quanhai WANG. Effects of turbulence on radial gas diffusion in binary particle fluidized bed [J]. CIESC Journal, 2025, 76(6): 2559-2568. |
| [6] | Yifei WANG, Jingjie REN, Mingshu BI, Haotian YE. Multi-objective optimization of cyclohexane oxidation process parameters based on inherent safety and economic performance [J]. CIESC Journal, 2025, 76(6): 2722-2732. |
| [7] | Min JIANG, Xiangyu SHAO, Ligang ZHENG, Jianliang GAO, Gang LEI. Effect of membrane pressure on the venting explosion process of premixed hydrogen-air gases [J]. CIESC Journal, 2025, 76(6): 2770-2780. |
| [8] | Deyin GU, Hao YANG, Changshu LI, Zuohua LIU. Mixing behavior of pseudoplastic fluid in a fractal perforated impeller stirred tank [J]. CIESC Journal, 2025, 76(6): 2569-2579. |
| [9] | Yulun WU, Zhenlei WANG, Xin WANG. Contrastive learning based on method for identifying operating conditions of ethylene cracking furnace [J]. CIESC Journal, 2025, 76(6): 2733-2742. |
| [10] | Haotian AN, Zhangye HAN, Muyao LU, Awu ZHOU, Jianrong LI. Promoting industrial application of MOF: scale-up preparation and shaping [J]. CIESC Journal, 2025, 76(5): 2011-2025. |
| [11] | Hongbin NIU, Li QIU, Jingxuan YANG, Zhonglin ZHANG, Xiaogang HAO, Zhongkai ZHAO, Abuliti ABUDULA, Guoqing GUAN. Effect of cylinder diameter on cyclone performance and its flow field mechanism [J]. CIESC Journal, 2025, 76(5): 2367-2376. |
| [12] | Hao QI, Yujie WANG, Shenhui LI, Qi ZOU, Yiqun LIU, Zhiping ZHAO. Molecular simulation study on adsorption and diffusion of C3H6 and C3H8 on Co/Zn-ZIFs [J]. CIESC Journal, 2025, 76(5): 2313-2326. |
| [13] | Wei LIN, Jian DU, Chen YAO, Jiahao ZHU, Wei WANG, Xiaotao ZHENG, Jianmin XU, Jiuyang YU. Study on ion transport and nucleation mechanism in electrochemical water softening process [J]. CIESC Journal, 2025, 76(4): 1788-1799. |
| [14] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
| [15] | Junliang HUO, Zhiguo TANG, Zongjun QIU, Yuhua FENG, Xu JIANG, Leyi WANG, Yu YANG, Fanfan QIAO, Yifan HE, Jianliang YU. Experimental research on risk of freezing and plugging during CO2 pipeline venting under throttling effect [J]. CIESC Journal, 2025, 76(4): 1898-1908. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
