CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1788-1799.DOI: 10.11949/0438-1157.20240831
• Energy and environmental engineering • Previous Articles Next Articles
Wei LIN1,2,3(), Jian DU1,2,3, Chen YAO1,2,3, Jiahao ZHU1,2,3, Wei WANG1,2,3(
), Xiaotao ZHENG1,2,3, Jianmin XU1,2,3, Jiuyang YU1,2,3
Received:
2024-07-22
Revised:
2024-12-17
Online:
2025-05-12
Published:
2025-04-25
Contact:
Wei WANG
林纬1,2,3(), 杜建1,2,3, 姚晨1,2,3, 朱家豪1,2,3, 汪威1,2,3(
), 郑小涛1,2,3, 徐建民1,2,3, 喻九阳1,2,3
通讯作者:
汪威
作者简介:
林纬(1987—),男,博士,副教授,linwei@wit.edu.cn
基金资助:
CLC Number:
Wei LIN, Jian DU, Chen YAO, Jiahao ZHU, Wei WANG, Xiaotao ZHENG, Jianmin XU, Jiuyang YU. Study on ion transport and nucleation mechanism in electrochemical water softening process[J]. CIESC Journal, 2025, 76(4): 1788-1799.
林纬, 杜建, 姚晨, 朱家豪, 汪威, 郑小涛, 徐建民, 喻九阳. 电化学水软化过程中离子输运与成核机理研究[J]. 化工学报, 2025, 76(4): 1788-1799.
Fig.1 Schematic diagram of electrochemical water softening experiment device1—replenishment tank; 2—reactor; 3—reservoir; 4—anode; 5—cathode; 6—peristaltic setup; 7—power; 8—circulating cooling water simulation solution; 9—softened water
试剂 | 规格 | 生产厂家 |
---|---|---|
NaHCO₃ | 500 g/瓶 | 天津市鼎盛鑫化工有限公司 |
CaCl2 | 500 g/瓶 | 天津市鼎盛鑫化工有限公司 |
EDTA-2钠 | 0.01 mol/L | 天津市津北精细化工有限公司 |
乙酰丙酮 | 0.975 g/ml | 国药集团化学试剂有限公司 |
pH 缓冲剂 | pH=10 | 上海市仪电科学仪器有限公司 |
Table 1 Reagents used in the experiment
试剂 | 规格 | 生产厂家 |
---|---|---|
NaHCO₃ | 500 g/瓶 | 天津市鼎盛鑫化工有限公司 |
CaCl2 | 500 g/瓶 | 天津市鼎盛鑫化工有限公司 |
EDTA-2钠 | 0.01 mol/L | 天津市津北精细化工有限公司 |
乙酰丙酮 | 0.975 g/ml | 国药集团化学试剂有限公司 |
pH 缓冲剂 | pH=10 | 上海市仪电科学仪器有限公司 |
1 | Zhang C H, Tang J W, Zhao G F, et al. Investigation on an electrochemical pilot equipment for water softening with an automatic descaling system: parameter optimization and energy consumption analysis[J]. Journal of Cleaner Production, 2020, 276: 123178. |
2 | 林纬, 李吉敏, 汪威, 等. 脉冲电场电化学软化水协同特性分析[J]. 高校化学工程学报, 2023, 37(2): 293-301. |
Lin W, Li J M, Wang W, et al. Analysis of synergistic characteristics of pulsed electric field and electrochemical on water softening[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(2): 293-301. | |
3 | Neveux T, Bretaud M, Chhim N, et al. Pilot plant experiments and modeling of CaCO3 growth inhibition by the use of antiscalant polymers in recirculating cooling circuits[J]. Desalination, 2016, 397: 43-52. |
4 | Shrestha R, Ban S, Devkota S, et al. Technological trends in heavy metals removal from industrial wastewater: a review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105688. |
5 | Kim J G, Ku J, Jung J, et al. Ion-exchangeable and sorptive reinforced membranes for efficient electrochemical removal of heavy metal ions in wastewater[J]. Journal of Cleaner Production, 2024, 438: 140779. |
6 | Lasisi K H, Ajibade T F, Zhang K S. 3,3′-Diaminodiphenyl sulfone engagement in polysulfonamide-based acid-resistant nanofiltration membrane fabrication for efficient separation performance and heavy metal ions removal from wastewater[J]. Journal of Membrane Science, 2022, 661: 120909. |
7 | Bera P, Jewrajka S K. Regenerable planting of multifunctional amine: regeneration-enhanced antifouling/antiscaling properties and performance of thin film composite nanofiltration membrane[J]. Journal of Membrane Science, 2024, 692: 122292. |
8 | Zhang L, Mishra D, Zhang K L, et al. Electrokinetic study of calcium carbonate and magnesium hydroxide particles in lime softening[J]. Water Research, 2020, 186: 116415. |
9 | Shen X L, Li T J, Jiang X P, et al. Desalination of water with high conductivity using membrane-free electrodeionization[J]. Separation and Purification Technology, 2014, 128: 39-44. |
10 | 林纬, 王众浩, 汪威, 等. 基于正交实验的电化学法水软化特性分析[J]. 化工学报, 2020, 71(12): 5725-5734. |
Lin W, Wang Z H, Wang W, et al. Analysis of water softening characteristics of electrochemical method based on orthogonal experiment[J]. CIESC Journal, 2020, 71(12): 5725-5734. | |
11 | 栾谨鑫. 复合网状阴极增强电化学除垢性能研究[D]. 大连: 大连理工大学, 2019. |
Luan J X. Study on multi-meshes coupled cathodes enhanced performance of electrochemical water softening system[D]. Dalian: Dalian University of Technology, 2019. | |
12 | Jiang B, Ren X Z, Liu Q N, et al. Electrochemical water softening technology: from fundamental research to practical application[J]. Water Research, 2024, 250: 121077. |
13 | Gabrielli C, Maurin G, Francy-Chausson H, et al. Electrochemical water softening: principle and application[J]. Desalination, 2006, 201(1/2/3): 150-163. |
14 | 於洋. 用于水软化的高性能电沉积反应器研究[D]. 杭州: 浙江大学, 2020. |
Yu Y. High performance electro-deposition reactor for water softening[D]. Hangzhou: Zhejiang University, 2020. | |
15 | Agostinho L C L, Nascimento L, Cavalcanti B F. Water hardness removal for industrial use: application of the electrolysis process[J]. Open Access Scientific Reports, 2012, 1(9): 460-465. |
16 | 钱凯凯, 胡将军. 电解参数对循环冷却水处理及倒极除垢效果的影响[J]. 工业水处理, 2020, 40(1): 83-86. |
Qian K K, Hu J J. Influence of electrolysis parameters on the treatment of circulating cooling water and the descaling effect of reversing electrodes[J]. Industrial Water Treatment, 2020, 40(1): 83-86. | |
17 | Jin H C, Yu Y, Zhang L, et al. Polarity reversal electrochemical process for water softening[J]. Separation and Purification Technology, 2019, 210: 943-949. |
18 | Yu Y, Jin H C, Meng P J, et al. Electrochemical water softening using air-scoured washing for scale detachment[J]. Separation and Purification Technology, 2018, 191: 216-224. |
19 | Yang Q Y, Xu L Q, He Q B, et al. Reduced cathodic scale and enhanced electrochemical precipitation of Ca2+ and Mg2+ by a novel fenced cathode structure: formation of strong alkaline microenvironment and favorable crystallization[J]. Water Research, 2022, 209: 117893. |
20 | 夏凡, 仲伟豪, 毛伟, 等. 促进CaCO3在溶液中成核的高效电化学水软化器[J]. 工业水处理, 2024, 44(7): 83-88. |
Xia F, Zhong W H, Mao W, et al. Construction of an electrochemical reactor for efficient water softening via promoting CaCO3 nucleation in liquid phase[J]. Industrial Water Treatment, 2024, 44(7): 83-88. | |
21 | Zaslavschi I, Shemer H, Hasson D, et al. Electrochemical CaCO3 scale removal with a bipolar membrane system[J]. Journal of Membrane Science, 2013, 445: 88-95. |
22 | Hasson D, Sidorenko G, Semiat R. Calcium carbonate hardness removal by a novel electrochemical seeds system[J]. Desalination, 2010, 263(1/2/3): 285-289. |
23 | Lin W, Wang Z H, Wang W, et al. Comparative analysis the performance of electrochemical water softening between high frequency electric fields and direct current electric fields based on orthogonal experimental methods[J]. Water Science and Technology, 2021, 83(7): 1677-1690. |
24 | 陈琦. 电化学除垢的垂直平面电极间流动特性研究[J]. 化学工程与装备, 2020(6): 5-7. |
Chen Q. Study on flow characteristics between vertical plane electrodes in electrochemical descaling[J]. Chemical Engineering & Equipment, 2020(6): 5-7. | |
25 | Mao W, Gu Y W, Kang W D, et al. Facilitated OH- diffusion via bubble motion and water flow in a novel electrochemical reactor for enhancing homogeneous nucleation of CaCO3 [J]. Water Research, 2023, 242: 120195. |
26 | Zhu J, Zhang X H, Lv P Y, et al. An experimental investigation of convective mass transfer characterization in two configurations of electrolysers[J]. International Journal of Hydrogen Energy, 2018, 43(18): 8632-8643. |
27 | 胡瑞柱, 黄廷林, 刘泽男. 碳酸钙诱导结晶动力学影响因素研究[J]. 中国环境科学, 2021, 41(8): 3584-3589. |
Hu R Z, Huang T L, Liu Z N. Influencing factors of induced crystallization kinetics of calcium carbonate[J]. China Environmental Science, 2021, 41(8): 3584-3589. | |
28 | 徐浩, 延卫. 阴极电流密度对电化学除垢技术生成水垢的影响[J]. 西安交通大学学报, 2013, 47(7): 47-51. |
Xu H, Yan W. Effect of cathode current density on scale generated by electrochemical scale removal technique[J]. Journal of Xi'an Jiaotong University, 2013, 47(7): 47-51. | |
29 | Li Y, Wang L, Wang L Y. Facilitating removal efficiency of electrochemical descaling system using confined crystallization membranes[J]. Journal of Water Process Engineering, 2023, 56: 104338. |
30 | Zhu T Z, Wang M, Yu D Z, et al. Improving cathode cleaning and current efficiency by regulating loose scale deposition in scale inhibitor-containing water[J]. Separation and Purification Technology, 2023, 323: 124494. |
[1] | Kun LI, Rui HUANG, Jun CONG, Haitao MA, Longjiao CHANG, Shaohua LUO. Simultaneous evolution of structural morphology and lithium storage properties in NCM622 cathode material [J]. CIESC Journal, 2025, 76(4): 1831-1840. |
[2] | Weijie ZHANG, Jiawen HE, Yiming ZHANG, Deli LI, Guangya HU, Xiao CAI, Jinhua WANG, Zuohua HUANG. Effects of fuel stratification on flow field and flame structure of multi-stage swirling methane combustion [J]. CIESC Journal, 2025, 76(4): 1754-1764. |
[3] | Di WU, Shipeng LIU, Wenwei WANG, Jiuchun JIANG, Xiaoguang YANG. Recent advances in the influence of mechanical pressure on the performance of lithium metal batteries [J]. CIESC Journal, 2025, 76(4): 1422-1431. |
[4] | Ziyi XU, Yang XI, Zewen SONG, Haijun ZHOU. Advances in the application of carbon nanomaterials for zinc ion batteries [J]. CIESC Journal, 2025, 76(1): 40-52. |
[5] | Zhijiao JI, Xiaofang ZHANG, Wen GAN, Yunpeng XUE. Influence of support on the performance of single atom electrocatalyst for ammonia synthesis and the control strategy [J]. CIESC Journal, 2025, 76(1): 18-39. |
[6] | Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation [J]. CIESC Journal, 2025, 76(1): 231-240. |
[7] | Peizhou DONG, Huiwen YU, Lingcao TAN, Baiping XU, Fang YANG. Mixing in a partially-filled screw channel of a baffled non-twin screw using the moving-particle semi-implicit method [J]. CIESC Journal, 2025, 76(1): 198-207. |
[8] | Dewei WU, Zhengpeng WANG, Yue ZHOU, Xiaoning LI, Zhao CHEN, Zhuo LI, Chengwei LIU, Xuegang LI, Wende XIAO. Preparation of silicon carbon anode for lithium-ion batteries by fixed bed and lithium storage properties [J]. CIESC Journal, 2024, 75(S1): 300-308. |
[9] | Siyu QIN, Yijia LIU, Jiacheng YANG, Wei TONG, Liwen JIN, Xiangzhao MENG. Characteristics of gas-liquid two-phase heat transfer in a confined vapor chamber [J]. CIESC Journal, 2024, 75(S1): 47-55. |
[10] | Shuying WANG, Tao ZUO, Zhiwei SHI, Xiaoming FAN, Weixin ZHANG. Synthesis and sodium ion storage properties of cation exchange resin based mesoporous graphitic carbon [J]. CIESC Journal, 2024, 75(9): 3338-3347. |
[11] | Dan PENG, Junjie LU, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress of functional electrolyte for high-voltage LiCoO2 battery [J]. CIESC Journal, 2024, 75(9): 3028-3040. |
[12] | Mingjun YANG, Wei SONG, Lei ZHANG, Zheng LING, Bingbing CHEN, Yongchen SONG. Research on the enhanced method of CO2-seawater hydrate generation [J]. CIESC Journal, 2024, 75(8): 2939-2948. |
[13] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[14] | Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia [J]. CIESC Journal, 2024, 75(5): 1843-1854. |
[15] | Wei WANG, Xu BAI, Xiang ZHAO, Xueliang MA, Wei LIN, Jiuyang YU. Optimization of air flotation cyclone separation conditions based on response surface methodology [J]. CIESC Journal, 2024, 75(5): 1929-1938. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 26
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||