CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3651-3658.DOI: 10.11949/0438-1157.20241353
• Energy and environmental engineering • Previous Articles Next Articles
Qiuying LI1(
), Yihuai HUA1, Hao CHENG1, Hanwei ZHANG2, Wenrui LIU2, Haochuan BAI2, Kai WANG2(
), Limin QIU2
Received:2024-11-25
Revised:2025-02-13
Online:2025-08-13
Published:2025-07-25
Contact:
Kai WANG
李秋英1(
), 花亦怀1, 程昊1, 张涵玮2, 刘文睿2, 白昊川2, 王凯2(
), 邱利民2
通讯作者:
王凯
作者简介:李秋英(1980—),女,博士,高级工程师,liqy18@cnooc.com.cn
基金资助:CLC Number:
Qiuying LI, Yihuai HUA, Hao CHENG, Hanwei ZHANG, Wenrui LIU, Haochuan BAI, Kai WANG, Limin QIU. Design of efficient hydrogen liquefaction process integrated with ORC system[J]. CIESC Journal, 2025, 76(7): 3651-3658.
李秋英, 花亦怀, 程昊, 张涵玮, 刘文睿, 白昊川, 王凯, 邱利民. 集成ORC系统的高效氢液化流程设计研究[J]. 化工学报, 2025, 76(7): 3651-3658.
Add to citation manager EndNote|Ris|BibTeX
| 设备 | 㶲效率公式 | 公式 |
|---|---|---|
| 压缩机 | (5) | |
| 膨胀机 | (6) | |
| 泵 | (7) | |
| 换热器 | (8) | |
| 节流阀 | (9) |
Table 1 The exergy efficiency calculation formulas of the main components in the processes
| 设备 | 㶲效率公式 | 公式 |
|---|---|---|
| 压缩机 | (5) | |
| 膨胀机 | (6) | |
| 泵 | (7) | |
| 换热器 | (8) | |
| 节流阀 | (9) |
| 系统 | 流股 | 温度/K | 压力/kPa | 质量流量/(kg/s) | 系统 | 流股 | 温度/K | 压力/kPa | 质量流量/(kg/s) |
|---|---|---|---|---|---|---|---|---|---|
| 原料氢液化系统 | H0 | 300 | 2100 | 0.069 | 氢Claude制冷循环系统 | F19 | 79.31 | 800 | 0.580 |
| H1 | 170 | 2100 | 0.069 | F20 | 96.98 | 800 | 0.580 | ||
| H2 | 80 | 2100 | 0.069 | F21 | 198.1 | 800 | 0.580 | ||
| H3 | 65 | 2100 | 0.069 | F22 | 50 | 1800 | 0.598 | ||
| H4 | 50 | 2100 | 0.069 | F23 | 40 | 1800 | 0.598 | ||
| H5 | 40 | 2100 | 0.069 | F24 | 30 | 1800 | 0.598 | ||
| H6 | 30 | 2100 | 0.069 | F25 | 24.58 | 300 | 0.598 | ||
| H7 | 26 | 2100 | 0.069 | F26 | 24.58 | 300 | 0.598 | ||
| H8 | 21.15 | 130 | 0.069 | F27 | 28 | 300 | 0.598 | ||
| H9 | 21.15 | 130 | 0.011 | F28 | 48 | 300 | 0.598 | ||
| H10 | 21.15 | 130 | 0.058 | F29 | 63 | 300 | 0.598 | ||
| 氢Claude制冷循环系统 | F1 | 198 | 300 | 0.598 | F30 | 78 | 300 | 0.598 | |
| F2 | 276.8 | 800 | 0.598 | F31 | 100 | 300 | 0.598 | ||
| F3 | 253.2 | 800 | 0.598 | N1 | 78.06 | 110 | 5.580 | ||
| F4 | 226.3 | 800 | 1.178 | N2 | 78.09 | 200 | 5.580 | ||
| F5 | 297.7 | 1800 | 1.178 | N3 | 83.65 | 200 | 5.580 | ||
| F6 | 253.2 | 1800 | 1.178 | N4 | 78.06 | 110 | 0.732 | ||
| F7 | 170 | 1800 | 1.178 | N5 | 78.09 | 200 | 0.732 | ||
| F8 | 80 | 1800 | 1.178 | N6 | 83.65 | 200 | 6.312 | ||
| F9 | 65 | 1800 | 1.178 | N7 | 190.2 | 200 | 6.312 | ||
| F10 | 65 | 1800 | 0.598 | R1 | 187.2 | 300 | 1.976 | ||
| F11 | 65 | 1800 | 0.580 | ORC系统 | R2 | 187.6 | 1000 | 1.976 | |
| F12 | 60.98 | 1500 | 0.580 | R3 | 187.6 | 1000 | 1.559 | ||
| F13 | 37.51 | 1500 | 0.580 | R4 | 187.6 | 1000 | 0.418 | ||
| F14 | 34.67 | 1200 | 0.580 | R5 | 226.3 | 1000 | 0.418 | ||
| F15 | 30 | 800 | 0.580 | R6 | 226.3 | 1000 | 1.559 | ||
| F16 | 32.02 | 800 | 0.580 | R7 | 226.3 | 1000 | 1.976 | ||
| F17 | 55.04 | 800 | 0.580 | R8 | 190.2 | 300 | 1.976 | ||
| F18 | 59.93 | 800 | 0.580 |
Table 2 Flow parameters for process simulation
| 系统 | 流股 | 温度/K | 压力/kPa | 质量流量/(kg/s) | 系统 | 流股 | 温度/K | 压力/kPa | 质量流量/(kg/s) |
|---|---|---|---|---|---|---|---|---|---|
| 原料氢液化系统 | H0 | 300 | 2100 | 0.069 | 氢Claude制冷循环系统 | F19 | 79.31 | 800 | 0.580 |
| H1 | 170 | 2100 | 0.069 | F20 | 96.98 | 800 | 0.580 | ||
| H2 | 80 | 2100 | 0.069 | F21 | 198.1 | 800 | 0.580 | ||
| H3 | 65 | 2100 | 0.069 | F22 | 50 | 1800 | 0.598 | ||
| H4 | 50 | 2100 | 0.069 | F23 | 40 | 1800 | 0.598 | ||
| H5 | 40 | 2100 | 0.069 | F24 | 30 | 1800 | 0.598 | ||
| H6 | 30 | 2100 | 0.069 | F25 | 24.58 | 300 | 0.598 | ||
| H7 | 26 | 2100 | 0.069 | F26 | 24.58 | 300 | 0.598 | ||
| H8 | 21.15 | 130 | 0.069 | F27 | 28 | 300 | 0.598 | ||
| H9 | 21.15 | 130 | 0.011 | F28 | 48 | 300 | 0.598 | ||
| H10 | 21.15 | 130 | 0.058 | F29 | 63 | 300 | 0.598 | ||
| 氢Claude制冷循环系统 | F1 | 198 | 300 | 0.598 | F30 | 78 | 300 | 0.598 | |
| F2 | 276.8 | 800 | 0.598 | F31 | 100 | 300 | 0.598 | ||
| F3 | 253.2 | 800 | 0.598 | N1 | 78.06 | 110 | 5.580 | ||
| F4 | 226.3 | 800 | 1.178 | N2 | 78.09 | 200 | 5.580 | ||
| F5 | 297.7 | 1800 | 1.178 | N3 | 83.65 | 200 | 5.580 | ||
| F6 | 253.2 | 1800 | 1.178 | N4 | 78.06 | 110 | 0.732 | ||
| F7 | 170 | 1800 | 1.178 | N5 | 78.09 | 200 | 0.732 | ||
| F8 | 80 | 1800 | 1.178 | N6 | 83.65 | 200 | 6.312 | ||
| F9 | 65 | 1800 | 1.178 | N7 | 190.2 | 200 | 6.312 | ||
| F10 | 65 | 1800 | 0.598 | R1 | 187.2 | 300 | 1.976 | ||
| F11 | 65 | 1800 | 0.580 | ORC系统 | R2 | 187.6 | 1000 | 1.976 | |
| F12 | 60.98 | 1500 | 0.580 | R3 | 187.6 | 1000 | 1.559 | ||
| F13 | 37.51 | 1500 | 0.580 | R4 | 187.6 | 1000 | 0.418 | ||
| F14 | 34.67 | 1200 | 0.580 | R5 | 226.3 | 1000 | 0.418 | ||
| F15 | 30 | 800 | 0.580 | R6 | 226.3 | 1000 | 1.559 | ||
| F16 | 32.02 | 800 | 0.580 | R7 | 226.3 | 1000 | 1.976 | ||
| F17 | 55.04 | 800 | 0.580 | R8 | 190.2 | 300 | 1.976 | ||
| F18 | 59.93 | 800 | 0.580 |
| 设备 | 流量/(kg/s) | 入口温度/ K | 出口温度/ K | 入口压力/ kPa | 出口压力/ kPa | 输入功率/ kW |
|---|---|---|---|---|---|---|
| C1 | 0.598 | 198 | 276.8 | 300 | 800 | 657.5 |
| C2 | 1.178 | 226.3 | 297.7 | 800 | 1800 | 1195 |
| P1 | 5.580 | 78.06 | 78.09 | 110 | 200 | 0.696 |
| P2 | 0.732 | 78.06 | 78.09 | 110 | 200 | 0.091 |
| P3 | 1.976 | 187.2 | 187.6 | 300 | 1000 | 2.833 |
| E1 | 0.58 | 65 | 60.98 | 1800 | 1500 | -21.85 |
| E2 | 0.58 | 37.51 | 34.67 | 1500 | 1200 | -10.61 |
| E3 | 0.58 | 34.67 | 30 | 1200 | 800 | -16.77 |
| E4 | 1.976 | 226.3 | 190.2 | 1000 | 300 | -105.5 |
Table 3 The operating parameters of compressor, pump and expander
| 设备 | 流量/(kg/s) | 入口温度/ K | 出口温度/ K | 入口压力/ kPa | 出口压力/ kPa | 输入功率/ kW |
|---|---|---|---|---|---|---|
| C1 | 0.598 | 198 | 276.8 | 300 | 800 | 657.5 |
| C2 | 1.178 | 226.3 | 297.7 | 800 | 1800 | 1195 |
| P1 | 5.580 | 78.06 | 78.09 | 110 | 200 | 0.696 |
| P2 | 0.732 | 78.06 | 78.09 | 110 | 200 | 0.091 |
| P3 | 1.976 | 187.2 | 187.6 | 300 | 1000 | 2.833 |
| E1 | 0.58 | 65 | 60.98 | 1800 | 1500 | -21.85 |
| E2 | 0.58 | 37.51 | 34.67 | 1500 | 1200 | -10.61 |
| E3 | 0.58 | 34.67 | 30 | 1200 | 800 | -16.77 |
| E4 | 1.976 | 226.3 | 190.2 | 1000 | 300 | -105.5 |
| 参数 | 本研究 | Leuna [ | 中科富海[ |
|---|---|---|---|
| 流程 | 液氮预冷的Claude氢液化系统+ORC系统 | 液氮预冷的Claude氢液化系统 | 液氮预冷的双压Claude氢液化系统 |
| 产量/(t/d) | 5 | 5 | 5 |
| 原料氢压力/kPa | 2100 | 2400 | 2500 |
| 原料氢温度/K | 300 | <313 | 310 |
| 液氢压力/kPa | 130 | 130 | 150 |
| 液氢温度/K | 21.15 | 21 | 21.5 |
| 压缩机效率/% | 85 | 65~70 | — |
| 膨胀机效率/% | 85 | 85 | — |
| 换热器级数 | 7 | 8 | 8 |
| 比能耗/(kWh/kg) | 7.93~8.22 | 11.9 | 11 |
| 㶲效率/% | 42.14 | 23.6 | 26.2 |
Table 4 Comparison of hydrogen liquefaction systems
| 参数 | 本研究 | Leuna [ | 中科富海[ |
|---|---|---|---|
| 流程 | 液氮预冷的Claude氢液化系统+ORC系统 | 液氮预冷的Claude氢液化系统 | 液氮预冷的双压Claude氢液化系统 |
| 产量/(t/d) | 5 | 5 | 5 |
| 原料氢压力/kPa | 2100 | 2400 | 2500 |
| 原料氢温度/K | 300 | <313 | 310 |
| 液氢压力/kPa | 130 | 130 | 150 |
| 液氢温度/K | 21.15 | 21 | 21.5 |
| 压缩机效率/% | 85 | 65~70 | — |
| 膨胀机效率/% | 85 | 85 | — |
| 换热器级数 | 7 | 8 | 8 |
| 比能耗/(kWh/kg) | 7.93~8.22 | 11.9 | 11 |
| 㶲效率/% | 42.14 | 23.6 | 26.2 |
| [1] | 中国氢能联盟. 中国氢能源及燃料电池产业发展报告[M]. 北京: 人民日报出版社, 2019. |
| China Hydrogen Alliance. China Hydrogen Energy and Fuel Cell Industry Development Report[M]. Beijing: People’s Daily Publishing House, 2019. | |
| [2] | 向巧, 胡晓煜, 王曼, 等. 关于氢能航空动力发展的认识与思考[J]. 航空发动机, 2024, 50(1): 1-9. |
| Xiang Q, Hu X Y, Wang M, et al. Observations on the development of hydrogen-powered aircraft propulsion system[J]. Aeroengine, 2024, 50(1): 1-9. | |
| [3] | 赖耀胜, 李龙. 氢能飞机发展现状分析[J]. 航空动力, 2021(6): 37-40. |
| Lai Y S, Li L. Hydrogen powered aircraft[J]. Aerospace Power, 2021(6): 37-40. | |
| [4] | 韩玉琪. 航空氢动力研发进展[J]. 大飞机, 2024(8): 15-19. |
| Han Y Q. Research and development progress of aviation hydrogen power[J]. Jetliner, 2024(8): 15-19. | |
| [5] | 陈双涛, 周楷淼, 赖天伟, 等. 大规模氢液化方法与装置[J]. 真空与低温, 2020, 26(3): 173-178. |
| Chen S T, Zhou K M, Lai T W, et al. Large-scale hydrogen liquefaction methods and devices[J]. Vacuum and Cryogenics, 2020, 26(3): 173-178. | |
| [6] | 张振扬, 妙丛, 王峰, 等. 规模化氢液化装置现状及未来技术路线分析[J]. 化工进展, 2022, 41(12): 6261-6274. |
| Zhang Z Y, Miao C, Wang F, et al. Analysis of present status and future technical route on large-scale hydrogen liquefaction plant[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6261-6274. | |
| [7] | 吕翠, 王金阵, 朱伟平, 等. 氢液化技术研究进展及能耗分析[J]. 低温与超导, 2019, 47(7): 11-18. |
| Lyu C, Wang J Z, Zhu W P, et al. Research progress and energy consumption analysis of hydrogen liquefaction technology[J]. Cryogenics & Superconductivity, 2019, 47(7): 11-18. | |
| [8] | Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4524-4533. |
| [9] | Abdi A, Chiu J, Martin V. State of the art in hydrogen liquefaction[C]//Proceedings of the ISES Solar World Congress 2019. International Solar Energy Society, 2019: 1311-1320. |
| [10] | Faramarzi S, Nainiyan S M M, Mafi M, et al. A novel hydrogen liquefaction process based on LNG cold energy and mixed refrigerant cycle[J]. International Journal of Refrigeration, 2021, 131: 263-274. |
| [11] | Chang H M, Kim B H, Choi B. Hydrogen liquefaction process with Brayton refrigeration cycle to utilize the cold energy of LNG[J]. Cryogenics, 2020, 108: 103093. |
| [12] | Yuksel Y E, Ozturk M, Dincer I. Energetic and exergetic assessments of a novel solar power tower based multigeneration system with hydrogen production and liquefaction[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13071-13084. |
| [13] | Riaz A, Qyyum M A, Min S, et al. Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: energy and exergy perspectives[J]. Applied Energy, 2021, 301: 117471. |
| [14] | Yuksel Y E, Ozturk M, Dincer I. Analysis and performance assessment of a combined geothermal power-based hydrogen production and liquefaction system[J]. International Journal of Hydrogen Energy, 2018, 43(22): 10268-10280. |
| [15] | Sleiti A K, Al-Ammari W A. A novel dual-pressure single-mixed refrigerant cryogenic system for hydrogen precooling process: optimization and thermoeconomic analysis[J]. International Journal of Hydrogen Energy, 2024, 85: 893-908. |
| [16] | Bian J, Yang J, Li Y X, et al. Thermodynamic and economic analysis of a novel hydrogen liquefaction process with LNG precooling and dual-pressure Brayton cycle[J]. Energy Conversion and Management, 2021, 250: 114904. |
| [17] | Seyam S, Dincer I, Agelin-Chaab M. Analysis of a clean hydrogen liquefaction plant integrated with a geothermal system[J]. Journal of Cleaner Production, 2020, 243: 118562. |
| [18] | Yang J, Li Y Z, Tan H B, et al. Optimization and analysis of a hydrogen liquefaction process integrated with the liquefied natural gas gasification and organic Rankine cycle[J]. Journal of Energy Storage, 2023, 59: 106490. |
| [19] | 王昊成, 杨敬瑶, 董学强, 等. 氢液化与低温高压储氢技术发展现状[J]. 洁净煤技术, 2023, 29(3): 102-113. |
| Wang H C, Yang J Y, Dong X Q, et al. Review on hydrogen liquefaction and cryo-compression hydrogen storage technologies[J]. Clean Coal Technology, 2023, 29(3): 102-113. | |
| [20] | Yang J, Li Y Z, Tan H B. Integrated hydrogen liquefaction process with a dual-pressure organic Rankine cycle-assisted LNG regasification system: design, comparison, and analysis[J]. Applied Energy, 2023, 347: 121372. |
| [21] | Wang H C, Yang J Y, Dong X Q, et al. Thermodynamic analysis of a dual reverse Brayton cycle (dual-RBC) hydrogen liquefaction process precooled by mixed-refrigerant[J]. International Journal of Hydrogen Energy, 2023, 48(80): 31254-31266. |
| [22] | Rezaie A H, Ziabasharhagh M, Mafi M. Applicability of the common equations of state for modeling hydrogen liquefaction processes in Aspen HYSYS[J]. Gas Processing Journal, 2021, 9(1): 11-28. |
| [23] | 曹学文, 杨健, 边江, 等. 新型双压Linde-Hampson氢液化工艺设计与分析[J]. 化工进展, 2021, 40(12): 6663-6669. |
| Cao X W, Yang J, Bian J, et al. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669. | |
| [24] | Sun H, Geng J L, Wang C, et al. Optimization of a hydrogen liquefaction process utilizing mixed refrigeration considering stages of ortho-para hydrogen conversion[J]. International Journal of Hydrogen Energy, 2022, 47(39): 17271-17284. |
| [25] | Berstad D O, Stang J H, Nekså P. Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4512-4523. |
| [26] | 孙潇, 朱光涛, 裴爱国. 氢液化装置产业化与研究进展[J]. 化工进展, 2023, 42(3): 1103-1117. |
| Sun X, Zhu G T, Pei A G. Industrialization and research progress of hydrogen liquefier[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. | |
| [27] | 熊联友, 杨坤, 孔巍, 等. 5 t/d氢液化装置的研制[J]. 真空与低温, 2024, 30(4): 349-354. |
| Xiong L Y, Yang K, Kong W, et al. Development of a 5 t/d hydrogen liquefaction unit[J]. Vacuum and Cryogenics, 2024, 30(4): 349-354. |
| [1] | Jianbin PENG, Ming LI, Junlong XIE, Jianye CHEN. Numerical investigation of liquid hydrogen leakage and explosion overpressure at liquid hydrogen receiving terminal [J]. CIESC Journal, 2025, 76(S1): 453-461. |
| [2] | Hao DING, Lin WANG, Hao LIU. Comparative study on mixing rules of vapor-liquid equilibrium for R290/R245fa [J]. CIESC Journal, 2025, 76(S1): 9-16. |
| [3] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [4] | Yinxiang TANG, Feng ZHU, Yingying FAN, Yuxin LONG, Yong DAI, Chunling DENG, Xiaofeng HUANG. Effect of preparation conditions on low-temperature co-removal of COS and CS2 from modified calcium carbide slag [J]. CIESC Journal, 2025, 76(7): 3639-3650. |
| [5] | Tonghui LI, Tianli HUI, Tao ZHENG, Rui ZHANG, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG. Synergistic palladium double active sites with hydroxide for high current density and pH-universal hydrogen evolution reaction [J]. CIESC Journal, 2025, 76(7): 3671-3685. |
| [6] | Jinjiang WANG, Zhenjie LU, Weizheng AN, Fengyun YANG, Xiaogang QIN. Research and prospect of early warning and diagnosis technology for ORC power generation system process [J]. CIESC Journal, 2025, 76(7): 3137-3152. |
| [7] | Jiaxiang CHEN, Wei ZHOU, Xuewei ZHANG, Lijie WANG, Yuming HUANG, Yang YU, Miaoting SUN, Wanjing LI, Junshu YUAN, Hongbo ZHANG, Xiaoxiao MENG, Jihui GAO, Guangbo ZHAO. Simulation study on the hydrogen production performance of a two-dimensional PEMWE model under pulsed voltage [J]. CIESC Journal, 2025, 76(7): 3521-3530. |
| [8] | Jiali WANG, Fang LIU, Wei CHEN, Xiaoying ZHANG, Shengting LI, Tian TIAN, Xiangyu XIN, Guang LIU, Yufei SONG. Recent advances in magnesium-based nanocomposites via in-situ template-confined synthesis [J]. CIESC Journal, 2025, 76(7): 3172-3184. |
| [9] | Tianhao WU, Tingwei YE, Yan LIN, Zhen HUANG. In-situ hydrogen supplementation of biomass chemical looping gasification to produce syngas with controllable H2/CO [J]. CIESC Journal, 2025, 76(7): 3498-3508. |
| [10] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [11] | Shenghua YANG, Yangjie SUN, Xiaojun XUE, Jie MI, Jiancheng WANG, Yu FENG. Research progress on gas pollutants removal by defective metal oxides [J]. CIESC Journal, 2025, 76(6): 2469-2482. |
| [12] | Pengwei LIAO, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Siyu YANG, Hao YU. Wind power hydrogen production systems considering uncertainty: multi-time scale operation strategy [J]. CIESC Journal, 2025, 76(6): 2743-2754. |
| [13] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [14] | Fang LI, Yiran WANG, Penghe ZHANG, Yueming LIU, Mingyuan HE. Hydrogen transfer reactions in hydrocarbon conversion process [J]. CIESC Journal, 2025, 76(6): 2483-2504. |
| [15] | Min JIANG, Xiangyu SHAO, Ligang ZHENG, Jianliang GAO, Gang LEI. Effect of membrane pressure on the venting explosion process of premixed hydrogen-air gases [J]. CIESC Journal, 2025, 76(6): 2770-2780. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||