CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3719-3732.DOI: 10.11949/0438-1157.20241516
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Zhengzheng GUO1,2(
), Yidan ZHAO1, Fuqiang WANG1, Lu PEI1, Yanling JIN1, Fang REN1,2, Penggang REN1(
)
Received:2024-12-30
Revised:2025-03-02
Online:2025-08-13
Published:2025-07-25
Contact:
Penggang REN
郭铮铮1,2(
), 赵一丹1, 王辅强1, 裴璐1, 靳彦岭1, 任芳1,2, 任鹏刚1(
)
通讯作者:
任鹏刚
作者简介:郭铮铮(1995—),男,博士,讲师,guozz@xaut.edu.cn
基金资助:CLC Number:
Zhengzheng GUO, Yidan ZHAO, Fuqiang WANG, Lu PEI, Yanling JIN, Fang REN, Penggang REN. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture[J]. CIESC Journal, 2025, 76(7): 3719-3732.
郭铮铮, 赵一丹, 王辅强, 裴璐, 靳彦岭, 任芳, 任鹏刚. 异质结构MoS2/RGO/NiFe2O4复合材料的构筑及电磁波吸收性能研究[J]. 化工学报, 2025, 76(7): 3719-3732.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 (a) XRD patterns; (b) Raman spectra; (c) Magnetic hysteresis loops; (d) XPS spectra of the prepared samples; High-resolution XPS spectra of (e) C 1s, (f) Mo 3d, (g) S 2p, (h) Fe 2p, (i) Ni 2p of MRN3 (1 Oe=79.5775 A/m, 1 emu=103 A/m)
Fig.5 (a) ε′ values, (b) ε″ values, (c) dielectric loss tangent, (d) μ′ values, (e) μ″ values, (f) magnetic loss tangent, (g)—(i) Cole-Cole curves and (j) C0 curves of MRN composites
Fig.6 (a) Impedance matching and (b) attenuation constant of the prepared samples with the thickness of 3.64 mm; (c) The relationship between RL, attenuation constant and impedance matching of MRN3 composite with the thickness of 3.64 mm; (d) RL values of various samples with the thickness of 3.64 mm; (e) The relationship between RL, tm and impedance matching of MRN3 composite with various thicknesses
Fig.8 (a) ε′ values, (b) ε″ values, (c) dielectric loss tangent, (d) μ′ values, (e) μ″ values and (f) magnetic loss and (g)—(i) Cole-Cole curves of MRN3-10, MRN3-15 and MRN3-20
Fig.10 (a) Schematic diagram of the EMW absorption mechanism of MRN composites; (b) A comparison with previously reported works based on the thickness and reflection loss; (c) A comprehensive comparison according to the absorber content, EAB and RLmin
| 样品 | 填料含量/% | RLmin/dB | tm/mm | EAB /GHz | 文献 |
|---|---|---|---|---|---|
| Cu/Cu2O-CF@MoS2 | 40 | -56.0 | 4.0 | 4.14 | [ |
| nano-carbon foam | 30 | -48.61 | 2.0 | 5.35 | [ |
| Fe3C@NC/GO | 20 | -40.05 | 2.1 | 3.17 | [ |
| RGO/SiO2 | 30 | -47.43 | 3.8 | 12.72 | [ |
| Fe/Fe3O4@C@MoS2 | 60 | -36.1 | 1.8 | 5.9 | [ |
| Ni-MoS2/TiO2/Ti3C2T x | 60 | -48.04 | 2.5 | 3.28 | [ |
| VSe2/CNT | 50 | -50.06 | 6.19 | 3.32 | [ |
| PEDOT/Fe3O4/rGO | 30 | -52.4 | 1.46 | 3.52 | [ |
| Co/CoO/RGO | 50 | -32.4 | 3.5 | 4.2 | [ |
| NiFe2O4/Fe3O4/PANI/MWCNT | — | -47.5 | 4.6 | 4.0 | [ |
| 1T′-MoSe2/GO | 10 | -52.08 | 1.8 | 5.3 | [ |
| MoS2/RGO/NiFe2O4 (MRN) | 15 | -54.13 | 3.64 | 6.27 | 本工作 |
Table 1 Comprehensive comparison of the prepared samples with recently reported materials
| 样品 | 填料含量/% | RLmin/dB | tm/mm | EAB /GHz | 文献 |
|---|---|---|---|---|---|
| Cu/Cu2O-CF@MoS2 | 40 | -56.0 | 4.0 | 4.14 | [ |
| nano-carbon foam | 30 | -48.61 | 2.0 | 5.35 | [ |
| Fe3C@NC/GO | 20 | -40.05 | 2.1 | 3.17 | [ |
| RGO/SiO2 | 30 | -47.43 | 3.8 | 12.72 | [ |
| Fe/Fe3O4@C@MoS2 | 60 | -36.1 | 1.8 | 5.9 | [ |
| Ni-MoS2/TiO2/Ti3C2T x | 60 | -48.04 | 2.5 | 3.28 | [ |
| VSe2/CNT | 50 | -50.06 | 6.19 | 3.32 | [ |
| PEDOT/Fe3O4/rGO | 30 | -52.4 | 1.46 | 3.52 | [ |
| Co/CoO/RGO | 50 | -32.4 | 3.5 | 4.2 | [ |
| NiFe2O4/Fe3O4/PANI/MWCNT | — | -47.5 | 4.6 | 4.0 | [ |
| 1T′-MoSe2/GO | 10 | -52.08 | 1.8 | 5.3 | [ |
| MoS2/RGO/NiFe2O4 (MRN) | 15 | -54.13 | 3.64 | 6.27 | 本工作 |
Fig.11 3D RCS plots for the (a) PEC substrates and PEC substrates covered with (b) MRN1-15, (c) MRN2-15, (d) MRN3-15; (e) RCS simulation curves of MRN1-15, MRN2-15, MRN3-15 under various incident angels; (f) RCS reduction values of the prepared MRN at specific angles
| [1] | Zhao X X, Huang Y, Liu X D, et al. Hollow multi-layer bowknot like nanoparticles surface modified by TMDs derived flexible fiber membranes for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2024, 483: 149085. |
| [2] | 汤进, 林斌, 毕松, 等. 轻薄炭黑涂层的制备及其微波吸收性能研究[J]. 化工学报, 2019, 70(11): 4469-4477. |
| Tang J, Lin B, Bi S, et al. Preparation and microwave absorption properties of light and thin carbon black coating[J]. CIESC Journal, 2019, 70(11): 4469-4477. | |
| [3] | Yu S L, Guo W Q, Zhou Z L, et al. Rough-endoplasmic-reticulum-like hierarchical composite structures for efficient mechanical-electromagnetic wave-energy attenuation[J]. Advanced Functional Materials, 2024, 34(14): 2312835. |
| [4] | 胡兴枝, 张皓焱, 庄境坤, 等. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
| Hu X Z, Zhang H Y, Zhuang J K, et al. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles[J]. CIESC Journal, 2023, 74(8): 3584-3596. | |
| [5] | Su Y, Jiang B, Shen H C, et al. Mesoporous carbon spheres modified with atomically dispersed iron sites for efficient electromagnetic wave absorption[J]. Carbon, 2025, 231: 119699. |
| [6] | Zhang Y J, Liu R, Liu C Y, et al. Metal foams for the interfering energy conversion: electromagnetic wave absorption, shielding, and sound attenuation[J]. Journal of Materials Science & Technology, 2025, 215: 258-282. |
| [7] | Tong Y C, Guo X, Liu C, et al. Shellular SiCN ceramics with integrated structure and function realizing full electromagnetic wave absorption in the X-band[J]. Journal of the European Ceramic Society, 2024, 44(8): 5055-5067. |
| [8] | Wang C, Huang M Q, Zhu H, et al. Confined magnetic nickel nanoparticles in carbon microspheres with high-performance electromagnetic wave absorption in Ku-band[J]. Composites Communications, 2024, 51: 102099. |
| [9] | Xiao J Y, Wen B, Liu X F, et al. In-situ growth of carbon nanotubes for the modification of wood-derived biomass porous carbon to achieve efficient low/mid-frequency electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2024, 676: 33-44. |
| [10] | Gao Z G, Iqbal A, Hassan T, et al. Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption[J]. Advanced Materials, 2024, 36(19): 2311411. |
| [11] | Wang X Y, Xing X F, Zhu H S, et al. State of the art and prospects of Fe3O4/carbon microwave absorbing composites from the dimension and structure perspective[J]. Advances in Colloid and Interface Science, 2023, 318: 102960. |
| [12] | Li Q Q, Zhao Y H, Li X H, et al. MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance[J]. Small, 2020, 16(42): 2003905. |
| [13] | Saha S, Chakraborty T, Saha A, et al. A multi-layer design of hexaferrite decorated graphene derivatives incorporated PVDF nanocomposite films; understanding the role of GO/rGO for outstanding electromagnetic wave absorption at microwave frequencies[J]. Carbon, 2024, 220: 118829. |
| [14] | Yang X, Shi Y B, Zhang H Z, et al. Utilizing a synergistic strategy that combines electromagnetic and chemical enhancement to analyze the SERS effect of the Fe3O4@GO@Ag on PAHs detection[J]. Journal of Colloid and Interface Science, 2025, 678: 532-539. |
| [15] | 吴海华, 傅文鑫, 刘少康, 等. ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能[J]. 复合材料学报, 2024, 41(3): 1316-1326. |
| Wu H H, Fu W X, Liu S K, et al. Study on preparation and microwave absorption properties of ZnO-graphene-TPU/PLA composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1316-1326. | |
| [16] | Zhao B, Yan Z K, Liu L L, et al. A liquid-metal-assisted competitive galvanic reaction strategy toward indium/oxide core-shell nanoparticles with enhanced microwave absorption[J]. Advanced Functional Materials, 2024, 34(18): 2314008. |
| [17] | Cao X L, Jia Z R, Hu D Q, et al. Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1030-1043. |
| [18] | Li B, Ma Z Q, Zhang X, et al. NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption[J]. Small, 2023, 19(12): 2207197. |
| [19] | Wu Z C, Cheng H W, Jin C, et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption[J]. Advanced Materials, 2022, 34(11): 2107538. |
| [20] | Lan X L, Wang R, Liu W B, et al. Multicomponent synergistic flower-like FeS/hollow C fiber for tunable and efficient microwave absorption[J]. Chemical Engineering Journal, 2024, 485: 149238. |
| [21] | Yan S Y, Shao S P, Tang Y X, et al. Ultralight hierarchical Fe3O4/MoS2/rGO/Ti3C2T x MXene composite aerogels for high-efficiency electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2024, 16(28): 36962-36972. |
| [22] | Jiang Q L, Xu L, Tang Z M, et al. A competitive strategy toward 1T/2H MoS2 to balance impedance for optimizing electromagnetic wave absorption[J]. Chemical Engineering Journal, 2024, 491: 151854. |
| [23] | Zhao J, He M K, Guo H, et al. Multidimensional construction of 1T-MoS2@graphene nanosheets nanocomposites for enhanced electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2025, 218: 35-44. |
| [24] | 李月霞, 吴梦, 纪子影, 等. Ti3C2T x /Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 25-31. |
| Li Y X, Wu M, Ji Z Y, et al. Behavior and mechanism of microwave absorbing and electromagnetic interference shielding of Ti3C2T x /Fe3O4 nanocomposites[J]. Materials Reports, 2024, 38(9): 25-31. | |
| [25] | 武丹丹, 王政炎, 张含笑, 等. 磁性CoFe/Ni4Zn/FeO/rGO复合材料的制备及电磁波吸收性能[J]. 微纳电子技术, 2024, 61(1): 66-75. |
| Wu D D, Wang Z Y, Zhang H X, et al. Preparation and electromagnetic wave absorption properties of magnetic CoFe/Ni4Zn/FeO/rGO composite material[J]. Micronanoelectronic Technology, 2024, 61(1): 66-75. | |
| [26] | Yuan M, Zhou M, Fu H Q. Synergistic microstructure of sandwich-like NiFe2O4@SiO2@MXene nanocomposites for enhancement of microwave absorption in the whole Ku-band[J]. Composites Part B: Engineering, 2021, 224: 109178. |
| [27] | Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. |
| [28] | 张路平, 杨晓凤, 郑海康, 等. 多孔Al2O3/SiC、MoSi2/SiC复合材料的制备及吸波性能[J]. 化工学报, 2019, 70(11): 4478-4485. |
| Zhang L P, Yang X F, Zheng H K, et al. Preparation and wave-absorbing properties of porous Al2O3/SiC and MoSi2/SiC composites[J]. CIESC Journal, 2019, 70(11): 4478-4485. | |
| [29] | 黄才华, 黄陈, 吴海华, 等. 熔融沉积成型Fe3O4-MWCNTs/PLA微波吸收材料性能[J]. 复合材料学报, 2024, 41(4): 1954-1967. |
| Huang C H, Huang C, Wu H H, et al. Properties of microwave absorbers formed by fused deposition modeling with Fe3O4-MWCNTs/PLA composite wire[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1954-1967. | |
| [30] | 马茜, 强荣, 邵玉龙, 等. 空心铁基碳纤维复合材料的制备及吸波性能[J]. 复合材料学报, 2024, 41(2): 1058-1069. |
| Ma Q, Qiang R, Shao Y L, et al. Preparation and microwave absorption performance of hollow iron-based carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1058-1069. | |
| [31] | Su J H, Zhang X, Ma Z Q, et al. Construction of Fe3C@N-doped graphene layers yolk-shelled nanoparticles on the graphene sheets for high-efficient electromagnetic wave absorption[J]. Carbon, 2024, 229: 119448. |
| [32] | Nguyen V Q, Luu M D, Pham D T, et al. Facile process for cost-effective layer-by-layer rGO/SiO2 structure for high microwave absorption[J]. Ceramics International, 2024, 50(22): 47136-47144. |
| [33] | Liu Y L, Tian C H, Wang F Y, et al. Dual-pathway optimization on microwave absorption characteristics of core-shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell[J]. Chemical Engineering Journal, 2023, 461: 141867. |
| [34] | Jia D J, Li X Y, Cai R Y, et al. Interfacial covalent bonding of Ni doped MoS2/TiO2/Ti3C2T x composites for electromagnetic wave absorption performance[J]. Applied Surface Science, 2023, 638: 158116. |
| [35] | Ma M, Zheng Q, Zhang X C, et al. VSe2/CNTs nanocomposites toward superior electromagnetic wave absorption performance[J]. Carbon, 2023, 212: 118159. |
| [36] | Xing C J, Xia A Q, Li W T, et al. Constructing multiple hetero-interfaces with rGO supported globular shaped PEDOT/Fe3O4 toward high-efficiency electromagnetic wave attenuation[J]. Carbon, 2025, 232: 119764. |
| [37] | Shu Y, Zhao T K, Abdul J, et al. High-efficient electromagnetic wave absorption of coral-like Co/CoO/RGO hybrid aerogels with good hydrophobic and thermal insulation properties[J]. Chemical Engineering Journal, 2023, 471: 144535. |
| [38] | Jamadi F, Seyed-Yazdi J, Ebrahimi-Tazangi F, et al. The impact of RGO and MWCNT/RGO on the microwave absorption of NiFe2O4@Fe3O4 in the presence or absence of PANI[J]. Journal of Materials Chemistry A, 2024, 12(47): 32981-33002. |
| [39] | Ling M Y, Wu J F, Liu P, et al. Three-dimensional n-MoSe2/GO x (n= 1T, 1T' and 2H) microsphere: phase-modulation strategy and microwave absorbing mechanism[J]. Carbon, 2024, 230: 119614. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Liang GUO, Ye CHEN, Qiming JIA, Xiujuan XIE. Simulated and experimental investigations on self-pressurization of liquid helium storage tank [J]. CIESC Journal, 2025, 76(7): 3561-3571. |
| [3] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [4] | Bilin LIANG, Qian YU, Siqi JIA, Fang LI, Qiming LI. Structural modulation and gas separation performance of Ni-MOF-74 metal-organic framework membranes [J]. CIESC Journal, 2025, 76(6): 2714-2721. |
| [5] | Feng LIU, Chunshuo HAN, Yi ZHANG, Yancheng LIU, Linjun YU, Jiawei SHEN, Xiaoquan GAO, Kai YANG. Micro-mechanism study on the effect of single and double hydrocarbon chain surfactants on oil-water interface properties under high temperature and high salt reservoir [J]. CIESC Journal, 2025, 76(6): 2939-2957. |
| [6] | Changyu LI, Qiang ZENG, Jie XIAO, Yangjie ZHANG, zheng ZHANG, Yuanhua LIN. Study on interface modification of LATP-based solid electrolyte membrane by PVDF [J]. CIESC Journal, 2025, 76(6): 2974-2982. |
| [7] | Naisheng GUO, Xiaobo ZHU, Shuang WANG, Ping CHEN, Zhaoyang CHU, Zhichen WANG. Research progress on high and low temperature performance and influencing factors of polyurethane modified asphalt [J]. CIESC Journal, 2025, 76(6): 2505-2523. |
| [8] | Bing ZHANG, Jianhui LI, Xinrong MA, Yang CHEN, Jinping LI, Libo LI. Research progress of MOF preparation by steam-assisted method [J]. CIESC Journal, 2025, 76(5): 2026-2041. |
| [9] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [10] | Haofan ZHAO, Haojie REN, Zongkai LIU, Guanying DONG, Yatao ZHANG. Research progress of MOFs glass membranes in gas separation applications [J]. CIESC Journal, 2025, 76(5): 2042-2054. |
| [11] | Haiqian ZHAO, Fang CHEN, Tao CHEN, Jianwei GUO, Wenjing LIN, Chufen YANG. Folate-modified pH-responsive copolymer mixed micelles for anticancer drug delivery [J]. CIESC Journal, 2025, 76(4): 1702-1710. |
| [12] | Yuanhua LI, Siqi LING, Kejun FENG, Ying FENG, Yuching KUO, Shihhuan HSIEH. Construction and catalytic application of immobilized lipase microreactors based on cMOFs for the synthesis of mandelic acid [J]. CIESC Journal, 2025, 76(3): 1170-1179. |
| [13] | Sanlong WANG, Yuelin WANG, Yu CAO. Research on the performance of inorganic perovskite solar cells based on phase heterojunction [J]. CIESC Journal, 2025, 76(3): 1346-1352. |
| [14] | Junbing XIAO, Xiangyu ZHONG, Jiandi REN, Fangfang ZHONG, Changhui LIU, Chuankun JIA. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials [J]. CIESC Journal, 2025, 76(3): 1312-1322. |
| [15] | Yanbei LIU, Ruoming WANG, Juan LIU, Taimoor Raza, Yuzheng LU, Rizwan Raza, Bin ZHU, Songbo LI, Shengli AN, Sining YUN. Preparation of CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ electrolyte and its property in semiconductor ionic fuel cells performance [J]. CIESC Journal, 2025, 76(3): 1353-1362. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||