CIESC Journal ›› 2014, Vol. 65 ›› Issue (1): 337-345.DOI: 10.3969/j.issn.0438-1157.2014.01.044
Previous Articles Next Articles
LI Xuewa, ZHAO Shixiong, WU Bin, AN De, WANG Yuxin
Received:
2013-05-28
Revised:
2013-09-17
Online:
2014-01-05
Published:
2014-01-05
Supported by:
supported by the National Natural Science Foundation of China (2012BGH-0001) and the Natural Science Foundation of Tianjin (11JCZDJC23800).
李雪娃, 赵世雄, 吴斌, 安德, 王宇新
通讯作者:
王宇新
作者简介:
李雪娃(1987-),女,硕士研究生。
基金资助:
国家自然科学基金项目(2012BGH-0001);天津市自然科学基金项目(11JCZDJC23800)。
CLC Number:
LI Xuewa, ZHAO Shixiong, WU Bin, AN De, WANG Yuxin. Electric field-assisted preparation of aligned MWCNTs/polystyrene composite membranes for enhanced gas separation performance[J]. CIESC Journal, 2014, 65(1): 337-345.
李雪娃, 赵世雄, 吴斌, 安德, 王宇新. 电场辅助制备多壁碳纳米管/聚苯乙烯复合膜的气体分离性能[J]. 化工学报, 2014, 65(1): 337-345.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.01.044
[1] | Buonomenna M G, Yave W, Golemme G. Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes[J]. RSC Adv., 2012, 29(2):10745-10773 |
[2] | Budd P M, McKeown N B. Highly permeable polymers for gas separation membranes[J]. Polym. Chem., 2010, 1(1):63-68 |
[3] | Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J. Membr. Sci., 1991, 62(12):165-185 |
[4] | Aroon M A, Ismail A F, Matsuura T, Montazer-Rahmati M M. Performance studies of mixed matrix membranes for gas separation: a review[J]. Sep. Purif. Technol., 2010, 75(3):229-242 |
[5] | Chung T S, Jiang L Y, Li Y, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Prog. Polym. Sci., 2007, 32(4):483-507 |
[6] | Cong H L, Radosz M, Towler B F, Shen Y Q. Polymer-inorganic nanocomposite membranes for gas separation[J]. Sep. Purif.Technol., 2007, 55(3):281-291 |
[7] | Goh P S, Ismail A F, Sanip S M, Ng B C, Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation[J]. Sep. Purif. Technol., 2011, 81(3):243-264 |
[8] | Romero A I, Parentis M L, Habert A C, Gonzo E E. Synthesis of polyetherimide/silica hybrid membranes by the sol-gel process: influence of the reaction conditions on the membrane properties[J]. J. Mater. Sci., 2011, 46(13):4701-4709 |
[9] | Ismail A F, Rahim N H, Mustafa A, Matsuura T, Ng B C, Abdullah S, Hashemifard S A. Gas separation performance of polyethersulfone/ multi-walled carbon nanotubes mixed matrix membranes[J]. Sep. Purif. Technol., 2011, 80(1):20-31 |
[10] | Kumar S, Sharma A, Tripathi B. Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes[J]. Micron, 2010, 41(7):909-914 |
[11] | Ruan S L, Gao P, Yang X G, Tu T X. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes[J]. Polymer, 2003, 44(19):5643-5654 |
[12] | Ismail A F, Goh P S, Sanip S M, Aziz M. Transport and separation properties of carbon nanotube-mixed matrix membrane[J]. Sep. Purif. Technol., 2009, 70(1):12-26 |
[13] | Sanip S M, Ismail A F, Goh P S, Ng B C, Abdullah M S, Soga T, Tanemura M, Yasuhiko H. Preparation and characteristics of functionalized multiwalled carbon nanotubes in polyimide mixed matrix membrane[J]. NANO, 2010, 5(4):195-202 |
[14] | Kim S, Pechar T W, Marand E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation[J]. Desalination, 2006, 192(1/2/3):330-339 |
[15] | Skoulidas A I, Ackerman D M, Johnson J K, Sholl D S. Rapid transport of gases in carbon nanotubes[J]. Phys. Rev. Lett., 2002, 89(18):185901 |
[16] | Ackerman D M, Skoulidas A I, Sholl D S, Johnson J K. Diffusivities of Ar and Ne in carbon nanotubes[J]. Mol. Simul., 2003, 29(10/11): 677-684 |
[17] | Skoulidas A I, Sholl D S, Johnson J K. Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes[J]. J. Chem. Phys., 2006, 124(5): 054708 |
[18] | Sokhan V P, Nicholson D, Quirke N. Fluid flow in nanopores: accurate boundary conditions for carbon nanotubes[J]. J. Chem. Phys., 2002, 117(18):8531-8539 |
[19] | Ge L, Zhu Z H, Li F, Liu S M, Wang L, Tang X G, Rudolph V. Investigation of gas permeability in carbon nanotube (CNT)-polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location[J]. J. Phys. Chem. C, 2011, 115(14):6661-6670 |
[20] | Romyen N, Thongyai S, Praserthdam P. Alignment of carbon nanotubes in polyimide under electric and magnetic fields[J]. J. Appl. Polym. Sci., 2012, 123(6):3470-3475 |
[21] | Oliva-Avile's A I, Avile's F, Sosa V. Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field[J]. Carbon, 2011, 49(9):2989-2997 |
[22] | Kumar S, Srivastava S, Vijay Y K. Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes[J]. Int. J. Hydrogen Energy, 2011, 37(4):3914-3921 |
[23] | Sharma A, Kumar S, Tripathi B. Aligned CNT/polymer nanocomposite membranes for hydrogen separation[J]. Int. J. Hydrogen Energy, 2009, 34(9):3977-3982 |
[24] | Sharma A, Vijay Y K. Effect of electric field variation in alignment of SWNT/PC nanocomposites[J]. Int. J. Hydrogen Energy, 2012, 37(4):3945-3948 |
[25] | Cong H L, Zhang J M, Radosz M, Shen Y Q. Carbon nanotube composite membranes of brominated poly(2, 6-diphenyl-1, 4-phenylene oxide) for gas separation[J]. J. Membr. Sci., 2007, 294(1/2): 178-185 |
[26] | Ge L, Zhu Z H, Rudolph V. Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane[J]. Sep. Purif. Technol., 2011, 78(1):76-82 |
[27] | Higuchi A, Agatsuma T, Uemiya S, Kojima T, Mizoguchi K, Pinnau I, Nagai K, Freeman B D. Preparation and gas permeation of immobilized fullerene membranes[J]. J. Appl. Polym. Sci., 2000, 77(3):529-537 |
[28] | Sun Wenxiu(孙文秀), Huang Zhipeng(黄智鹏), Zhang Lu(张鹭), Zhu Jing(朱静). Studies on fluorescent properties of multi-walled carbon nanotubes before and after concentrated nitric acid treatment[J]. Spectrosc. & Spectr. Anal.(光谱学与光谱分析), 2005, 25(1):10-12 |
[29] | Luo Y S, Xia X H, Liang Y, Zhang Y G, Ren Q F, Li J L, Jia Z J, Tang Y W. Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWCNTs[J]. J. Solid State. Chem., 2007, 180(6):1928-1933 |
[30] | Qiao Jie(乔洁), Tang Shengnan(唐胜男), Dong Chuan(董川). Studies on spectrum and electrical properties of functioned multi-walled carbon nanotubes[J]. J. SX. Univi.:Nat. Sci. Ed.(山西大学学报:自然科学版), 2008, 31(2):207-210 |
[31] | Okotrub A V, Kanygin M A, Sedelnikova O V, Gusel'nikov A V, Belavin V V, Kotosonov A S, Bulusheva L G. Interaction of ultrasoft X-rays with arrays of aligned carbon nanotubes[J]. J. Nanophotonics, 2010, 4(1):041655-041655 |
[32] | Stoy R D. Interactive dipole model for two-sphere system[J]. Journal of Electrostatics, 1994, 33(3): 385-392. |
[33] | Ma C, Zhang W, Zhu Y F, Ji L J, Zhang R P, Koratkar N, Liang J. Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field[J]. Carbon, 2008, 46(4):706-710 |
[34] | Yang X Z, Zhu Y F, Ji L J, Zhang C, Liang J. Influence of AC electric field on macroscopic network of carbon nanotubes in polystyrene[J]. J. Dispersion Sci. Technol., 2007, 28(8):1164-1168 |
[35] | Nakatsuka Y, Kiyohara S, Ikeda M, Tanaka K, Akiwama R. Dispersion and redispersion methods for dispersoids as well as crush method for aggregated dispersoids, and devices therefor[P]: EP, 1870156. 2007-12-26 |
[36] | Mohanty K K, Ottino J M, Davis H T. Reaction and transport in disordered composite media: introduction of percolation concepts[J]. Chem. Eng. Sci., 1982, 37(6): 905-924 |
[37] | Bao H D, Sun Y, Xiong Z Y, Guo Z X, Yu J. Effects of the dispersion state and aspect ratio of carbon nanotubes on their electrical percolation threshold in a polymer[J]. J. Appl. Polym. Sci., 2013, 128(1):735-740 |
[38] | Penu C, Hu G H, Fernandez A, Marchal P, Choplin L. Rheological and electrical percolation threshold of carbon nanotube/polymer nanocomposites[J]. Polym. Eng. Sci., 2012, 52(10):2173-2181 |
[39] | Hermant M C, Smeets N M B, Meuldijk J, van Hal R C F, Heuts H P A, Klumperman B, van Herk A M, Koning C E. Influence of the molecular weight distribution on the percolation threshold of carbon nanotube-polystyrene composites[J]. E-polymers, 2009, 2009(22): 1-13 |
[40] | Puleo A C, Muruganandam N, Paul D R. Gas sorption and transport in substituted polystyrenes[J]. J. Polym. Sci.: Part B: Polym. Phys., 1989, 27(11):2385-2406 |
[41] | Huang L L, Zhang L Z, Shao Q, Lu L H, Lu X H, Jiang S Y, Shen W F. Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects[J]. J. Phys. Chem. C, 2007, 111(32):11912-11920 |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[8] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[12] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[13] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[14] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[15] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||