[1] |
Gustafsson J, Delsing J, van Deventer J. Improved district heating substation efficiency with a new control strategy[J]. Appl. Energy, 2010, 87(6): 1996-2004
|
[2] |
Sun F T, Fu L, Zhang S G, Sun J. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China[J]. Appl. Therm. Eng., 2012, 37: 136-144
|
[3] |
Kelly S, Pollitt M. An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom[J]. Energy Policy, 2010, 38(11): 6936-6945
|
[4] |
Knutsson D, Werner S, Ahlgren E O. Combined heat and power in the Swedish district heating sector—impact of green certificates and CO2 trading on new investments[J]. Energy Policy, 2006, 34(18): 3942-3952
|
[5] |
Rolfsman B. Combined heat-and-power plants and district heating in a deregulated electricity market[J]. Appl. Energy, 2004, 78(1): 37-52
|
[6] |
Lybæk R. Discovering market opportunities for future CDM projects in Asia based on biomass combined heat and power production and supply of district heating[J]. Energy Sustain. Dev., 2008, 12(2): 34-48
|
[7] |
Marbe Å, Harvey S. Opportunities for integration of biofuel gasifiers in natural-gas combined heat-and-power plants in district-heating systems[J]. Appl. Energy, 2006, 83(7): 723-748
|
[8] |
Abrahamse W, Steg L, Vlek C, Rothengatter T. A review of intervention studies aimed at household energy conservation[J]. J. Environ. Psychol., 2005, 25(3): 273-291
|
[9] |
Lund H, Moller B, Mathiesen B V, Dyrelund A. The role of district heating in future renewable energy systems[J]. Energy, 2010, 35(3): 1381-1390
|
[10] |
Yildirim N, Toksoy M, Gokcen G. Piping network design of geothermal district heating systems: case study for a university campus[J]. Energy, 2010, 35(8): 3256-3262
|
[11] |
Curti V, von Spakovsky M R, Favrat D. An environomic approach for the modeling and optimization of a district heating network based on centralized and decentralized heat pumps, cogeneration and/or gas furnace(Ⅰ): Methodology[J]. Int. J. Therm. Sci., 2000, 39(7): 721-730
|
[12] |
Curti V, Favrat D, von Spakovsky M R. An environomic approach for the modeling and optimization of a district heating network based on centralized and decentralized heat pumps, cogeneration and/or gas furnace(Ⅱ): Application[J]. Int. J. Therm. Sci., 2000, 39(7): 731-741
|
[13] |
Su Baoqing (苏保青). District heating technology research of using heat pump to recycle condensing heat in power plant[J]. Shanxi Energy and Conservation (山西能源与节能), 2007, 3: 18-19
|
[14] |
Li Y, Fu L, Zhang S G, Zhao X L. A new type of district heating system based on distributed absorption heat pumps[J]. Energy, 2011, 36(7): 4570-4576
|
[15] |
Keil C, Plura S, Radspieler M, Schweigler C. Application of customized absorption heat pumps for utilization of low-grade heat sources[J]. Appl. Therm. Eng., 2008, 28(16): 2070-2076
|
[16] |
Zhao X L, Fu L, Zhang S G. General thermodynamic performance of irreversible absorption heat pump[J]. Energ. Convers. Manage., 2011, 52(1): 494-499
|
[17] |
Li H N, Russell N, Sharifi V, Swithenbank J. Techno-economic feasibility of absorption heat pumps using wastewater as the heating source for desalination[J]. Desalination, 2011, 281: 118-127
|
[18] |
El-Dessouky H, Ettouney H, Alatiqi I, Al-Nuwaibit G. Evaluation of steam jet ejectors[J]. Chem. Eng. Process., 2002, 41(6): 551-561
|
[19] |
Keenan J H, Neumann E P, Lustwerk F. An investigation of ejector design by analysis and experiment[J]. J. Appl. Mech.-T. Asme, 1950, 17(3):299-309
|
[20] |
Munday J T, Bagster D F. A new ejector theory applied to steam jet refrigeration[J]. Ind. Eng. Chem. Process Des. Dev., 1977,16(4): 442-449
|
[21] |
Chen L T. Heat driven mobile refrigeration cycle analysis[J]. Energy Conversion, 1978, 18(1):25-29
|
[22] |
Khattab N M, Barakat M H. Modeling the design and performance characteristics of solar steam-jet cooling for comfort air conditioning[J]. Sol. Energy, 2002, 73(4):257-267
|
[23] |
Shen Shengqiang (沈胜强), Zhang Kun (张琨), Liu Jia (刘佳), Yang Yong (杨勇). Experimental investigation on performance of adjustable ejector[J]. CIESC Journal (化工学报), 2009, 60(6): 1398-1401
|
[24] |
Zhu Yinhai (祝银海), Li Yanzhong (厉彦忠), Yu Jianlin (鱼剑琳). Experimental validation of a hybrid ejector model with refrigerant R141B[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2008, 59(9): 2188-2193
|
[25] |
Varga S, Oliveira A C, Diaconu B. Influence of geometrical factors on steam ejector performance—a numerical assessment[J]. Int. J. Refrig., 2009, 32(7): 1694-1701
|
[26] |
Zhang B, Shen S Q. A theoretical study on a novel bi-ejector refrigeration cycle[J]. Appl. Therm. Eng., 2006, 26(5/6): 622-626
|
[27] |
Xu Haitao (徐海涛), Sang Zhifu (桑芝富). Thermodynamic models for calculating entrainment ratio of steam-jet ejector[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2004, 55(5): 704-710
|
[28] |
Huang B J, Chang J M, Wang C P, Petrenko V A. A 1-D analysis of ejector performance[J]. Int. J. Refrig., 1999, 22(5):354-364
|