CIESC Journal ›› 2015, Vol. 66 ›› Issue (7): 2620-2627.DOI: 10.11949/j.issn.0438-1157.20141703

Previous Articles     Next Articles

Biosynthesis of D-1,2,4-butanetriol from D-xylose by recombinantEscherichia coli

MA Pengfei, MENG Jian, ZHOU Jing, GAO Haijun   

  1. School of Life Science, Beijing Institute of Technology, Beijing 100081, China
  • Received:2014-11-18 Revised:2015-03-24 Online:2015-07-05 Published:2015-07-05
  • Supported by:

    supported by the Major National Scientific Instrument and Equipment Development Project of China (2012YQ0401400802).

重组大肠杆菌利用D-木糖合成D-1,2,4-丁三醇

马鹏飞, 蒙坚, 周静, 高海军   

  1. 北京理工大学生命学院, 北京 100081
  • 通讯作者: 高海军
  • 基金资助:

    国家重大科学仪器设备开发专项项目(2012YQ0401400802)。

Abstract:

1,2,4-Butanetriol (BT) is an important organic synthetic intermediate. In this study, the metabolic network of Escherichia coli was reconstructed by heterogeneously expressing a keto acid decarboxylase (mdlC) from Pseudomonas putida ATCC12633 and a D-xylose dehydrogenase (xdh) from Caulobacter crescentus CB15, and knocking out xylA, yjhH and yagE which were the genes of xylose utilization pathway and intermediary metabolite pathway for D-1,2,4-butanetriol synthesis. The recombinant strain could synthesize D-1,2,4-butanetriol directly using D-xylose as precursor. Culture conditions such as temperature, medium volume, pH of fermentation broth were investigated at the titer of D-1,2,4-butanetriol of 3.96 g·L-1 under suitable fermentation conditions. The relationship between glucose utilization and D-1,2,4-butanetriol synthesis was discussed. After modifying the phosphoenolpyruvate: sugar phosphotransferase system (PTS) by knocking out ptsG the reconstructed E.coli could utilize glucose and xylose simultaneously, leading to a higher D-1,2,4-butanetriol productivity.

Key words: D-1,2,4-butanetriol, PTS system, metabolism, biocatalysis, synthetic biology

摘要:

1,2,4-丁三醇(1,2,4-butanetriol, BT)是一种重要的有机合成中间体。通过克隆表达恶臭假单胞菌(Pseudomonas putida ATCC12633)2-酮酸脱羧酶(mdlC)和新月柄杆菌(Caulobacter crescentus CB15)D-木糖脱氢酶(xdh),敲除木糖利用和D-1,2,4-丁三醇合成中间代谢物分解途径中关键基因木糖异构酶(xylA)和2-酮酸醛缩酶(yjhHyagE),重构大肠杆菌代谢网络,得到了能够将D-木糖转化为D-1,2,4-丁三醇的重组菌株。考察了温度、装液量、pH控制等条件对重组菌株合成D-1,2,4-丁三醇的影响,在适宜条件下发酵36 h后D-1,2,4-丁三醇产量达到3.96 g·L-1。探讨了葡萄糖利用与丁三醇合成的关系,通过敲除编码酶IICBGlcptsG基因改造重组菌株的磷酸烯醇式丙酮酸葡萄糖转移酶(phosphoenolpyruvate: sugar phosphotransferase system, PTS)系统,菌株可以在利用葡萄糖生长的同时进行木糖的转化,具有更高的合成能力。

关键词: D-1,2,4-丁三醇, PTS系统, 代谢, 生物催化, 合成生物学

CLC Number: