[1] |
Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review [J]. Fuel, 2003, 82 (6): 607-631.
|
[2] |
Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catalysis Today, 2003, 86 (1): 211-263.
|
[3] |
Stanislaus A, Marafi A, Rana M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production [J]. Catalysis Today, 2010, 153 (1): 1-68.
|
[4] |
Gao Q, Ofosu T N K, Ma S G, et al. Catalyst development for ultra-deep hydrodesulfurization (HDS) of dibenzothiophenes(Ⅰ): Effects of Ni promotion in molybdenum-based catalysts [J]. Catalysis Today, 2011, 164 (1): 538-543.
|
[5] |
Song C, Ma X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization [J]. Applied Catalysis B: Environmental, 2003, 41 (1): 207-238.
|
[6] |
Brunet S, Mey D, Pérot G, et al. On the hydrodesulfurization of FCC gasoline: a review [J]. Applied Catalysis A: General, 2005, 278 (2): 143-172.
|
[7] |
Oyama S T, Gott T, Zhao H, et al. Transition metal phosphide hydroprocessing catalysts: a review [J]. Catalysis Today, 2009, 143 (1): 94-107.
|
[8] |
Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide [J]. Journal of the American Chemical Society, 1978, 100 (1): 170-175.
|
[9] |
Yoshinaka S, Segawa K. Hydrodesulfurization of dibenzothiophenes over molybdenum catalyst supported on TiO2-Al2O3 [J]. Catalysis Today, 1998, 45 (1-4): 293-298.
|
[10] |
Okamoto Y, Maezawa A, Imanaka T. Active sites of molybdenum sulfide catalysts supported on Al2O3 and TiO2 for hydrodesulfurization and hydrogenation [J]. Journal of Catalysis, 1989, 120 (1): 29-45.
|
[11] |
Wang Haitang(王海棠), Zhu Yinhua(朱银华), Yang Zhuhong(杨祝红), Liu Jinlong(刘金龙), Sun Qingjie(孙庆杰), Lu Xiaohua(陆小华), Feng Xin(冯新). p-Nitrophenol hydrogenation over a novel Ni/TiO2 catalyst [J]. Chinese Journal of Catalysis(催化学报), 2009, 30 (5): 414-420.
|
[12] |
Zuo Zhonghua(左中华), Xie Yuping(谢玉萍), Nie Hong(聂红), Shi Yahua(石亚华), Li Can(李灿). Study on hydrodesulfurization mechanism of 4,6-dimethyldibenzothiophene:catalytic behavior of NiW-based catalysts [J]. Chinese Journal of Catalysis(催化学报), 2002, 23 (3): 271-275.
|
[13] |
Song Hua(宋华), Guo Yuntao(郭云涛), Li Feng(李锋), Yu Hongkun(于洪坤). Preparation, hydrodesulfurization and hydrodenitrogeneration performance of Ni2P/TiO2-Al2O3 catalyst [J]. Acta Physico-Chimica Sinica(物理化学学报), 2010, 26 (9): 2461- 2467.
|
[14] |
Li N, Liu G, Zhen C, Li F, Zhang L L, Cheng H M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly [J]. Advanced Functional Materials, 2011, 21(9): 1717-1722.
|
[15] |
Gao Y Y, Pu X P, Zhang D F, Ding G Q, Shao X, Ma J. Combustion synthesis of graphene oxide-TiO2 hybrid materials for photodegradation of methyl orange [J]. Carbon, 2012, 50: 4093-4101.
|
[16] |
Kim H I, Kim S, Kang J K, Choi W. Graphene oxide embedded into TiO2 nanofiber: effective hybrid photocatalyst for solar conversion [J]. Journal of Catalysis, 2014, 309: 49-57.
|
[17] |
Zhang H, Lv X J, Li Y M, Wang Y, Li J H. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano, 2009, 4 (1): 380-386.
|
[18] |
Ferdous D, Bakhshi N N, Dalai A K, Adjaye J. Synthesis, characterization and performance of NiMo catalysts supported on titania modified alumina for the hydroprocessing of different gas oils derived from Athabasca bitumen [J]. Applied Catalysis B: Environmental, 2007, 72: 118-128.
|
[19] |
Li L C, Zhu Y D, Lu X H, Wei M J, Zhuang W, Yang Z H, Feng X. Carbon heterogeneous surface modification on a mesoporous TiO2-supported catalyst and its enhanced hydrodesulfurization performance [J]. Chemical Communications, 2012, 48: 11525-11527.
|
[20] |
Li H, Li M, Chu Y, Liu F, Nie H. Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts [J]. Applied Catalysis A: General, 2011, 403 (1): 75-82.
|
[21] |
Olivas A, Zepeda T A. Impact of Al and Ti ions on the dispersion and performance of supported NiMo(W)/SBA-15 catalysts in the HDS and HYD reactions [J]. Catalysis Today, 2009, 143: 120-125.
|
[22] |
Hu Y, Dong L, Wang J. UV-Raman characterizations of MoO3/ZrO2 catalysts with extremely low MoO3 loadings [J]. Chemistry Letters, 2000, (8): 904-905.
|
[23] |
Wang Huaiyuan(汪怀远), Zhu Youzhuang(朱友庄), Zhao Jingyan(赵景岩), Cheng Xiaoshuang(程小双), Zhang Zhihua(张志华). Characteristics of TiO2 carrier on performance of dibenzothiophene hydrodesulfurization [J]. CIESC Journal (化工学报), 2013, 64 (7): 2462-2467.
|
[24] |
Abdel Dayem H M. Dynamic phenomena during reduction of α-NiMoO4 in different atmospheres:? in-situ thermo-Raman spectroscopy study [J]. Ind. Eng. Chem. Res., 2007, 46 (8): 2466- 2472.
|
[25] |
Peining Z, Nair A S, Shengjie P, Shengyuan, Y, Ramakrishna S. Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning [J]. ACS Applied Materials & Interfaces, 2012, 4 (2): 581-585.
|
[26] |
Beccat P, Da Silva P, Huiban Y, Kasztelan S. Quantitative surface analysis by XPS (X-ray photoelectron spectroscopy): application to hydrotreating catalysts [J]. Oil & Gas Science and Technology, 1999, 54(4): 487-496.
|
[27] |
Lai W, Song W, Pang L, Wu Z, Zheng N, Li J, Fang W. The effect of starch addition on combustion synthesis of NiMo-Al2O3 catalysts for hydrodesulfurization [J]. Journal of Catalysis, 2013, 303: 80-91.
|