[1] |
Dong Li(董丽), Yang Xueping(杨学萍). New advances in direct production of light olefins from syngas [J]. Petrochemical Technology (石油化工), 2012, 41(10): 1201-1206.
|
[2] |
Fu D, Dai W, Xu X, et al. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy [J]. ChemCatChem, 2015,7(5): 752-756.
|
[3] |
Steynberg A, Dry M, Davis B, et al. Fischer-Tropsch reactors [J]. Studies in Surface Science and Catalysis, 2004, 152: 64-195.
|
[4] |
Davis B H. Fischer-Tropsch synthesis: comparison of performances of iron and cobalt catalysts [J]. Industrial & Engineering Chemistry Research, 2007, 46(26): 8938-8945.
|
[5] |
de Smit E, Weckhuysen B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour [J]. Chem. Soc. Rev., 2008, 37(12): 2758-2781.
|
[6] |
Torres Galvis H M, Bitter J H, Khare C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins [J]. Science, 2012, 335(6070): 835-838.
|
[7] |
Torres Galvis H M, de Jong K P. Catalysts for production of lower olefins from synthesis gas: a review [J]. ACS Catalysis, 2013, 3(9): 2130-2149.
|
[8] |
Luque R, de la Osa A R, Campelo J M, et al. Design and development of catalysts for biomass-to-liquid-Fischer-Tropsch (BTL-FT) processes for biofuels production [J]. Energy & Environmental Science, 2012, 5(1): 5186-5202.
|
[9] |
Das D, Ravichandran G, Chakrabarty D K. Conversion of syngas to light olefins over silicalite-1 supported iron and cobalt catalysts: effect of manganese addition [J]. Catalysis Today, 1997, 36(3): 285-293.
|
[10] |
Malessa R, Baerns M. Iron/manganese oxide catalysts for Fischer-Tropsch synthesis (Ⅳ): Activity and selectivity [J]. Industrial & Engineering Chemistry Research, 1988, 27(2): 279-283.
|
[11] |
Frossling N. The evaporation of falling drops [J]. Gerlande Beitr Geophys, 1938, 52: 170-216.
|
[12] |
Weisz P, Hicks J. The behaviour of porous catalyst particles in view of internal mass and heat diffusion effects [J]. Chemical Engineering Science, 1962, 17(4): 265-275.
|
[13] |
Su Junjie(苏俊杰), Mao Wei(茅威), Yang Zhen(杨震), Xu Jing(徐晶), Han Yifan(韩一帆). Kinetics of CoCu/SiO2 for synthesis of lower carbon mixed alcohols directly from syngas [J]. CIESC Journal(化工学报), 2014, 65(1): 143-151.
|
[14] |
Shroff M D, Kalakkad D S, Coulter K E, et al. Activation of precipitated iron Fischer-Tropsch synthesis catalysts [J]. Journal of Catalysis, 1995, 156(2): 185-207.
|
[15] |
Butt J. Carbide phases on iron-based Fischer-Tropsch synthesis catalysts (Ⅰ): Characterization studies [J]. Catalysis Letters, 1990, 7(1-4): 61-81.
|
[16] |
Kuivila C, Stair P, Butt J. Compositional aspects of iron Fischer-Tropsch catalysts: an XPS/reaction study [J]. Journal of Catalysis, 1989, 118(2): 299-311.
|
[17] |
Yang Z, Pan X, Wang J, et al. FeN particles confined inside CNT for light olefin synthesis from syngas: effects of Mn and K additives [J]. Catalysis Today, 2012, 186(1): 121-127.
|
[18] |
Fierro J L G. Cu-promoted Fe2O3/MgO-based Fischer-Tropsch catalysts of biomass-derived syngas [J]. Industrial & Engineering Chemistry Research, 2015, 54(3): 911-921
|
[19] |
Tang L, Song C, Li M, et al. Study of K/Mn-MgO supported Fe catalysts with Fe(CO)5 and Fe(NO3)3 as precursors for CO hydrogenation to light alkenes [J]. Chinese Journal of Chemistry, 2013, 31(10): 1263-1268.
|
[20] |
Jensen K, Massoth F. Studies on iron-manganese oxide carbon monoxide catalysts (Ⅱ): Carburization and catalytic activity [J]. Journal of Catalysis, 1985, 92(1): 109-118.
|
[21] |
Mei D, Rousseau R, Kathmann S M, et al. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study [J]. Journal of Catalysis, 2010, 271(2): 325-342.
|
[22] |
Cheng J, Hu P, Ellis P, et al. A DFT study of the chain growth probability in Fischer-Tropsch synthesis [J]. Journal of Catalysis, 2008, 257(1): 221-228.
|
[23] |
Cheng J, Hu P, Ellis P, et al. A first-principles study of oxygenates on Co surfaces in Fischer-Tropsch synthesis [J]. The Journal of Physical Chemistry C, 2008, 112(25): 9464-9473.
|
[24] |
Cheng J, Hu P, Ellis P, et al. Some understanding of Fischer-Tropsch synthesis from density functional theory calculations [J]. Topics in Catalysis, 2010, 53(5/6): 326-337.
|
[25] |
Cheng J, Song T, Hu P, et al. A density functional theory study of the α-olefin selectivity in Fischer-Tropsch synthesis [J]. Journal of Catalysis, 2008, 255(1): 20-28.
|
[26] |
Dry M, Shingles T, Boshoff L. Rate of the Fischer-Tropsch reaction over iron catalysts [J]. Journal of Catalysis, 1972, 25(1): 99-104.
|
[27] |
Yang J, Liu Y, Chang J, et al. Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe-Mn catalyst [J]. Industrial & Engineering Chemistry Research, 2003, 42(21): 5066-5090.
|
[28] |
Ahón V R, Costa Jr E F, Monteagudo J E, et al. A comprehensive mathematical model for the Fischer-Tropsch synthesis in well-mixed slurry reactors[J]. Chemical Engineering Science, 2005, 60(3): 677-694.
|
[29] |
Tsubaki N, Yoshii K, Fujimoto K. Anti-ASF distribution of Fischer-Tropsch hydrocarbons in supercritical-phase reactions [J]. Journal of Catalysis, 2002, 207(2): 371-375.
|
[30] |
Govender N S, Botes F G, de Croon M H J M, et al. Mechanistic pathway for C2+ hydrocarbons over an Fe/K catalyst [J]. Journal of Catalysis, 2014, 312: 98-107.
|