[1] |
COMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing:controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107-108:699-706.
|
[2] |
DIERCKS R, ARNDT J D, FREYER S, et al. Raw material changes in the chemical industry[J]. Chemical Engineering & Technology, 2008, 31(5):631-637.
|
[3] |
WANG S, ZHU Z H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation:a review[J]. Energy & Fuels, 2004, 18(4):1126-1139.
|
[4] |
金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1):3-8. DOI:10.3969/j.issn. 0438-1157. 2012.01.001. JIN Y, ZHOU Y C, HU S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1):3-8. DOI:10.3969/j.issn.0438-1157.2012.01.001.
|
[5] |
KUNKES E L, SIMONETTI D A, WEST R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900):417-421.
|
[6] |
LI P, ZHANG W, HAN X, et al. Conversion of methanol to hydrocarbons over phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites[J]. Catalysis Letters, 2010, 134(1/2):124-130.
|
[7] |
DUPAIN X, KRUL R A, SCHAVERIEN C J, et al. Production of clean transportation fuels and lower olefins from Fischer-Tropsch synthesis waxes under fluid catalytic cracking conditions:the potential of highly paraffinic feedstocks for FCC[J]. Applied Catalysis B:Environmental, 2006, 63(3):277-295.
|
[8] |
GALVIS H M T, BITTER J H, Khare C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070):835-838.
|
[9] |
TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas:a review[J]. ACS Catalysis, 2013, 3(9):2130-2149.
|
[10] |
SUN B, YU G, LIN J, et al. A highly selective Raney Fe@HZSM-5 Fischer-Tropsch synthesis catalyst for gasoline production:one-pot synthesis and unexpected effect of zeolites[J]. Catalysis Science & Technology, 2012, 2(8):1625-1629.
|
[11] |
BARRAULT J, FORQUY C, MENEZO J C, et al. Hydrocondensation of CO2 (CO) over supported iron catalysts[J]. Reaction Kinetics and Catalysis Letters, 1981, 17(3/4):373-378.
|
[12] |
BUKUR D B, LANG X, MUKESH D, et al. Binder/support effects on the activity and selectivity of iron catalysts in the Fischer-Tropsch synthesis[J]. Industrial & Engineering Chemistry Research, 1990, 29(8):1588-1599.
|
[13] |
CUBEIRO M L, LóPEZ C M, COLMENARES A, et al. Use of aluminophosphate molecular sieves in CO hydrogenation[J]. Applied Catalysis A:General, 1998, 167(2):183-193.
|
[14] |
SOMMEN A P B, STOOP F, VAN DER WIELE K. Synthesis gas conversion on carbon supported iron catalysts and the nature of deactivation[J]. Applied Catalysis, 1985, 14:277-288.
|
[15] |
SUN P, SIDDIQI G, CHI M, et al. Synthesis and characterization of a new catalyst Pt/Mg(Ga)(Al)O for alkane dehydrogenation[J]. Journal of Catalysis, 2010, 274(2):192-199.
|
[16] |
MACHIDA M, MINAMI S, HINOKUMA S, et al. Unusual redox behavior of Rh/AlPO4 and its impact on three-way catalysis[J]. Journal of Physical Chemistry C, 2014, 119(1):373-380.
|
[17] |
ORDOMSKY V V, LEGRAS B, CHENG K, et al. The role of carbon atoms of supported iron carbides in Fischer-Tropsch synthesis[J]. Catalysis Science & Technology, 2015, 5(3):1433-1437.
|
[18] |
HERINGTON E F G. The Fischer-Tropsch synthesis considered as a polymerization reaction[J]. Chemistry & Industry, 1946, 65:346-347.
|
[19] |
ANDERSON R B, FRIEDEL R A, STORCH H H. Fischer-Tropsch reaction mechanism involving stepwise growth of carbon chain[J]. Journal of Chemical Physics, 1951, 19(3):313-319.
|
[20] |
DE S E. The renaissance of iron-based Fischer-Tropsch synthesis:on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12):2758-2781.
|
[21] |
KUIVILA C S, STAIR P C, BUTT J B. Compositional aspects of iron Fischer-Tropsch catalysts:an XPS reaction study[J]. Journal of Catalysis, 1989, 118(2):299-311.
|
[22] |
XU K, SUN B, LIN J, et al. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst[J]. Nature Communications, 2014, 5:5783-5783.
|
[23] |
SHROFF M D, KALAKKAD D S, COULTER K E, et al. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. Journal of Catalysis, 1995, 156(2):185-207.
|
[24] |
YANG C, ZHAO H, HOU Y, et al. Fe5C2 nanoparticles:a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2012, 134(38):15814-15821.
|
[25] |
SUN B, LIN J, XU K, et al. Fischer-Tropsch synthesis over skeletal FeCe catalysts leached from rapidly quenched ternary Fe Ce Al alloys[J]. ChemCatChem, 2013, 5(12):3857-3865.
|
[26] |
JI M, CHEN G, WANG J, et al. Dehydrogenation of ethylbenzene to styrene with CO2 over iron oxide-based catalysts[J]. Catalysis Today, 2010, 158(3):464-469.
|
[27] |
陈桂丽, 陈鑫, 王新葵,等. 铁系催化剂上乙苯与CO2 氧化脱氢反应[J]. 催化学报, 2009, 30(7):619-623. DOI:10.3321/j.issn:0253-9837.2009.07.007. CHEN G L, CHEN X, WANG X K, et al. Oxidative dehydrogenation of ethylbenzene with CO2 over iron oxide-based catalysts[J]. Chinese Journal of Catalysis, 2009, 30(7):619-623. DOI:10.3321/j.issn:0253-9837.2009.07.007.
|
[28] |
RAVAGNAN L, SIVIERO F, LENARDI C, et al. Cluster-beam deposition and in situ characterization of carbyne-rich carbon films[J]. Physical Review Letters, 2002, 89(28):287-291.
|
[29] |
TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3):1126-1130.
|
[30] |
XU J, BARTHOLOMEW C H. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts[J]. Journal of Physical Chemistry B, 2005, 109(6):2392-2403.
|
[31] |
LU J, YANG L, XU B, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621.
|
[32] |
GRACIA J M, PRINSLOO F F, Niemantsverdriet J W. Mars-van Krevelen-like mechanism of CO hydrogenation on an iron carbide surface[J]. Catalysis Letters, 2009, 133(3/4):257-261.ke Mechanism of CO Hydrogenation on an Iron Carbide Surface[J]. Catalysis Letters, 2009, 133(3-4):257-261.
|