[1] |
CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6):2411-2502.
|
[2] |
U.S. Energy Information Administration. Monthly biodiesel production report[EB/OL].[2015-12-01]. http://www.eia.gov/biofuels/biodiesel/production/.
|
[3] |
JONG E, HIGSON A, WALSH P, et al. Product developments in the bio-based chemicals arena[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(6):606-624.
|
[4] |
NAKAGAWA Y, SHINMI Y, KOSO S, et al. Direct hydrogenolysis of glycerol into 1, 3-propanediol over rhenium-modified iridium catalyst[J]. Journal of Catalysis, 2010, 272(2):191-194.
|
[5] |
ZHU S H, QIU Y N, ZHU Y L, et al. Hydrogenolysis of glycerol to 1, 3-propanediol over bifunctional catalysts containing Pt and heteropolyacids[J]. Catalysis Today, 2013, 212:120-126.
|
[6] |
DENG C H, DUAN X Z, ZHOU J H, et al. Size effects of Pt-Re bimetallic catalysts for glycerol hydrogenolysis[J]. Catalysis Today, 2014, 234:208-214.
|
[7] |
DANIEL O M, DELARIVA A, KUNKES E L, et al. X-ray absorption spectroscopy of bimetallic Pt-Re catalysts for hydrogenolysis of glycerol to propanediols[J]. ChemCatChem, 2010, 2(9):1107-1114.
|
[8] |
MA L, HE D H. Influence of catalyst pretreatment on catalytic properties and performances of Ru-Re/SiO2 in glycerol hydrogenolysis to propanediols[J]. Catalysis Today, 2010, 149(1):148-156.
|
[9] |
QIN L Z, SONG M J, CHEN C L. Aqueous-phase deoxygenation of glycerol to 1, 3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor[J]. Green Chemistry, 2010, 12(8):1466-1472.
|
[10] |
ARUNDHATHI R, MIZUGAKI T, MITSUDOME T, et al. Highly selective hydrogenolysis of glycerol to 1, 3-propanediol over a boehmite-supported platinum/tungsten catalyst[J]. ChemSusChem, 2013, 6(8):1345-1347.
|
[11] |
NAKAGAWA Y, NING X, AMADA Y, et al. Solid acid co-catalyst for the hydrogenolysis of glycerol to 1, 3-propanediol over Ir-ReOx/SiO2[J]. Applied Catalysis A:General, 2012, 433:128-134.
|
[12] |
DENG C H, DUAN X Z, ZHOU J H, et al. Ir-Re alloy as a highly active catalyst for the hydrogenolysis of glycerol to 1, 3-propanediol[J]. Catalysis Science & Technology, 2015, 5:1540-1548.
|
[13] |
邓澄浩. 甘油氢解Re-M基催化剂的结构调控及其构效关系[D]. 上海:华东理工大学, 2015. DENG C H. Re-modified catalysts for glycerol hydrogenolysis:structure manipulation and structure-performance relationship[D]. Shanghai:East China University of Science and Technology, 2015.
|
[14] |
DENG C H, LENG L, DUAN X Z, et al. Support effect on the bimetallic structure of Ir-Re catalysts and their performances in glycerol hydrogenolysis[J]. Journal of Molecular Catalysis A:Chemical, 2015, 410:81-88.
|
[15] |
AN N H, ZHANG W L, YUAN X L, et al. Catalytic oxidation of formaldehyde over different silica supported platinum catalysts[J]. Chemical Engineering Journal, 2013, 215:1-6.
|
[16] |
KIM T W, KLEITZ F, PAUL B, et al. MCM-48-like large mesoporous silicas with tailored pore structure:facile synthesis domain in a ternary triblock copolymer-butanol-water system[J]. Journal of the American Chemical Society, 2005, 127(20):7601-7610.
|
[17] |
MURESAN E I, POPESCU V, SANDU I. Synthesis and characterization of hierarchical metallosilicate macro-spherical catalysts[J]. Revista De Chimie, 2014, 65(9):1029-1035.
|
[18] |
JEONG A Y, KOO S M, KIM D P. Characterization of hydrophobic SiO2 powders prepared by surface modification on wet gel[J]. Journal of Sol-Gel Science and Technology, 2000, 19(1/2/3):483-487.
|
[19] |
ZEPEDA T, PAWELEC B, FIERRO J, et al. Effect of Ti on the catalytic properties of Co-Mo/Ti(X)-HMS catalysts in the reaction of hydrodesulfurization of 4-ethyl-6-methyl dibenzothiophene[J]. Journal of Catalysis, 2006, 242(2):254-269.
|
[20] |
HAIR M L. Hydroxyl groups on silica surface[J]. Journal of Non-Crystalline Solids, 1975, 19:299-309.
|
[21] |
BREYSSE M, AFANASIEV P, GEANTET C, et al. Overview of support effects in hydrotreating catalysts[J]. Catalysis Today, 2003, 86(1):5-16.
|
[22] |
MORTERRA C, MAGNACCA G. A case study:surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species[J]. Catalysis Today, 1996, 27(3):497-532.
|
[23] |
LI M F, LI H F, JIANG F, et al. Effect of surface characteristics of different alumina on metal-support interaction and hydrodesulfurization activity[J]. Fuel, 2009, 88(7):1281-1285.
|
[24] |
VUURMAN M, STUFKENS D, OSKAM A, et al. Structural determination of surface rhenium oxide on various oxide supports (Al2O3, ZrO2, TiO2 and SiO2)[J]. Journal of Molecular Catalysis, 1992, 76(1):263-285.
|
[25] |
KIM D S, WACHS I. Surface rhenium oxide-support interaction for supported Re2O7 catalysts[J]. Journal of Catalysis, 1993, 141(2):419-429.
|
[26] |
BARE S R, KELLY S D, D. VILA F, et al. Experimental (XAS, STEM, TPR, and XPS) and theoretical (DFT) characterization of supported rhenium catalysts[J]. The Journal of Physical Chemistry C, 2011, 115(13):5740-5755.
|
[27] |
DEBEILA M, COVILLE N, SCURRELL M, et al. DRIFTs studies of the interaction of nitric oxide and carbon monoxide on Au-TiO2[J]. Catalysis Today, 2002, 72(1):79-87.
|
[28] |
AMADA Y, SHINMI Y, KOSO S, et al. Reaction mechanism of the glycerol hydrogenolysis to 1, 3-propanediol over Ir-ReOx/SiO2 catalyst[J]. Applied Catalysis B:Environmental, 2011, 105(1):117-127.
|
[29] |
CHIA M, O'NEILL B J, ALAMILLO R, et al. Bimetallic Rh-Re/C catalysts for the production of biomass-derived chemicals[J]. Journal of Catalysis, 2013, 308:226-236.
|
[30] |
CHIA M, PAGAN-TORRES Y J, HIBBITTS D, et al. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts[J]. Journal of the American Chemical Society, 2011, 133(32):12675-12689.
|
[31] |
ZHANG L, KARIM A M, ENGELHARD M H, et al. Correlation of Pt-Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol[J]. Journal of Catalysis, 2012, 287:37-43.
|