CIESC Journal ›› 2016, Vol. 67 ›› Issue (5): 2084-2092.DOI: 10.11949/j.issn.0438-1157.20151570
Previous Articles Next Articles
TIAN Shunfeng, CHENG Li, GU Zhengbiao, HONG Yan, LI Zhaofeng, LI Caiming
Received:
2015-10-19
Revised:
2016-01-08
Online:
2016-05-05
Published:
2016-05-05
Supported by:
supported by the Key Program of the National Natural Science Foundation of China (31230057), the National Natural Science Foundation of China (31371787) and the Twelfth Five-Year National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2012BAD34B07).
田顺风, 程力, 顾正彪, 洪雁, 李兆丰, 李才明
通讯作者:
程力
基金资助:
国家自然科学基金重点项目(31230057);国家自然科学基金项目(31371787);十二五科技部国家重点科技研究与发展规划项目(2012BAD34B07)。
CLC Number:
TIAN Shunfeng, CHENG Li, GU Zhengbiao, HONG Yan, LI Zhaofeng, LI Caiming. Comparison of different lignin removal processes for corn stover on cellulase adsorption and enzymatic hydrolysis[J]. CIESC Journal, 2016, 67(5): 2084-2092.
田顺风, 程力, 顾正彪, 洪雁, 李兆丰, 李才明. 玉米秸秆中不同木质素脱除方法对纤维素酶吸附及酶解效果的比较[J]. 化工学报, 2016, 67(5): 2084-2092.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20151570
[1] | HIMMEL M E, DING S-Y, JOHNSON D K, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production [J]. Science, 2007, 315 (5813): 804-807. |
[2] | ZHANG Y H P, DING S Y, MIELENZ J R, et al. Fractionating recalcitrant lignocellulose at modest reaction conditions [J]. Biotechnology and Bioengineering, 2007, 97 (2): 214-223. |
[3] | 崔美, 黄仁亮, 苏荣欣, 等. 木质纤维素新型预处理与顽抗特性 [J]. 化工学报, 2012, 63 (2): 677-687. DOI: 10.3969/j.issn.0438-1157.2012.03.002. CUI M, HUANG R L, SU R X, et al. An overview on lignocellulose pretreatment and recalcitrant [J]. CIESC Journal, 2012, 63 (2): 677-687. DOI: 10.3969/j.issn.0438-1157.2012.03.002. |
[4] | MOSIER N, WYMAN C, DALE B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology, 2005, 96 (6): 673-686. |
[5] | 刘黎阳, 牛坤, 刘晨光, 等. 离子液体预处理油料作物木质纤维素 [J]. 化工学报, 2013, 64 (S1): 104-110. DOI: 10.3969/j.issn.0438-1157.2013.z1.015. LI L Y, NIU K, LIU C G, et al. Effect of ionic liquid pretreatment on lignocellulosic biomass from oilseeds [J]. CIESC Journal, 2013, 64 (S1): 104-110. DOI: 10.3969/j.issn.0438-1157.2013.z1.015. |
[6] | KIM S, HOLTZAPPLE M T. Effect of structural features on enzyme digestibility of corn stover [J]. Bioresource Technology, 2006, 97 (4): 583-591. |
[7] | ALVIRA P, TOMAS P E, BALLESTEROS M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review [J]. Bioresource Technology, 2010, 101 (13): 4851-4861. |
[8] | SALEHI S M A, KARIMI K, BEHZAD T, et al. Efficient conversion of rice straw to bioethanol using sodium carbonate pretreatment [J]. Energy & Fuels, 2012, 26 (12): 7354-7361. |
[9] | BERLIN A, BALAKSHIN M, GILLKES N, et al. Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations [J]. Journal of Biotechnology, 2006, 125 (2): 198-209. |
[10] | DING S Y, LIU Y S, ZENG Y, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? [J]. Science, 2012, 338 (6110): 1055-1060. |
[11] | YU Z, JAMEEL H, CHANG H M, et al. The effect of delignification of forest biomass on enzymatic hydrolysis [J]. Bioresource Technology, 2011, 102 (19): 9083-9089. |
[12] | LIU Z, PADMANABHAN S, CHENG K, et al. Two-step delignification of miscanthus to enhance enzymatic hydrolysis: aqueous ammonia followed by sodium hydroxide and oxidants [J]. Energy & Fuels, 2014, 28 (1): 542-548. |
[13] | MOU H, LI B, FARDIM P. Pretreatment of corn stover with the modified hydrotropic method to enhance enzymatic hydrolysis [J]. Energy & Fuels, 2014, 28 (7): 4288-4293. |
[14] | KIM S, HOLTZAPPLE M T. Lime pretreatment and enzymatic hydrolysis of corn stover [J]. Bioresource Technology, 2005, 96 (18): 1994-2006. |
[15] | LI C, WANG L, CHEN Z, et al. Ozonolysis pretreatment of maize stover: the interactive effect of sample particle size and moisture on ozonolysis process [J]. Bioresource Technology, 2015, 183: 240-247. |
[16] | SELIG M J, VINZANT T B, HIMMEL M E, et al. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes [J]. Applied biochemistry and Biotechnology, 2009, 155 (1/2/3): 94-103. |
[17] | LI M, FOSTER C, KELKAR S, et al. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes [J]. Biotechnology Biofuels, 2012, 5 (1): 38. |
[18] | KLEMAN-LEYER K M, SIIKA-AHO M, TEERI T T, et al. The cellulases endoglucanase Ⅰ and cellobiohydrolase Ⅱ of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size [J]. Applied and Environmental Microbiology, 1996, 62 (8): 2883-2887. |
[19] | GHOSE T. Measurement of cellulase activities [J]. Pure and Applied Chemistry, 1987, 59 (2): 257-268. |
[20] | SMITH P, KROHN R I, HERMANSON G, et al. Measurement of protein using bicinchoninic acid [J]. Analytical Biochemistry, 1985, 150 (1): 76-85. |
[21] | CHEN M, ZHAO J, XIA L. Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility [J]. Biomass and Bioenergy, 2009, 33 (10): 1381-1385. |
[22] | SLUITER A, HAMES B, RUIZ R, et al. Determination of structural carbohydrates and lignin in biomass [R/OL]. National Renewable Energy Laboratory (NREL). 2007. http://www.nrel.gov/biomass/pdfs/42618.pdf. |
[23] | LI Q, GAO Y, WANG H, et al. Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification [J]. Bioresource Technology, 2012, 125: 193-199. |
[24] | QI B, CHEN X, SHEN F, et al. Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology [J]. Industrial & Engineering Chemistry Research, 2009, 48 (15): 7346-7353. |
[25] | KUMAR R, WYMAN C E. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments [J]. Biotechnology and Bioengineering, 2009, 103 (2): 252-267. |
[26] | ROLLION J A, ZHU Z, SATHITSUKSANOH N, et al. Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia [J]. Biotechnology and Bioengineering, 2011, 108 (1): 22-30. |
[27] | YANG B, WYAMN C E. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates [J]. Biotechnology and Bioengineering, 2006, 94 (4): 611-617. |
[28] | ZHU Z, SATHITSUKSANOH N, VINZANT T, et al. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility [J]. Biotechnology and Bioengineering, 2009, 103 (4): 715-724. |
[29] | DU R, SU R, LI X, et al. Controlled adsorption of cellulase onto pretreated corncob by pH adjustment [J]. Cellulose, 2012, 19 (2): 371-380. |
[30] | ZHANG J, MA X, YU J, et al. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse [J]. Bioresource Technology, 2011, 102 (6): 4585-4589. |
[31] | SEGAL L, CREELY J, MARTIN A, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer [J]. Textile Research Journal, 1959, 29 (10): 786-794. |
[32] | CHANG V S, HOLTZAPPLE M T. Fundamental factors affecting biomass enzymatic reactivity [J]. Applied Biochemistry and Biotechnology, 2000, 84 (1): 5-37. |
[33] | LU Y, YANG B, GREGG D, et al. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues [J]. Applied Biochemistry and Biotechnology, 2002, 98/100 (1/2/3/4/5/6/7/8/9): 641-654. |
[34] | ZHANG Y H P, LYND L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems [J]. Biotechnology and Bioengineering, 2004, 88 (7): 797-824. |
[35] | LEU S Y, ZHU J. Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding [J]. Bioenergy Research, 2013, 6 (2): 405-415. |
[36] | KOTIRANTA P, KARLSSON J, SIIKA-AHO M, et al. Adsorption and activity of Trichoderma reesei cellobiohydrolase Ⅰ, endoglucanase Ⅱ, and the corresponding core proteins on steam pretreated willow [J]. Applied Biochemistry and Biotechnology, 1999, 81 (2): 81-90. |
[37] | MOONEY C A, MANSFIELD S D, TOUHY M G, et al. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods [J]. Bioresource Technology, 1998, 64 (2): 113-119. |
[38] | ZHU L, O’DWYER J P, CHANG V S, et al. Structural features affecting biomass enzymatic digestibility [J]. Bioresource Technology, 2008, 99 (9): 3817-3828. |
[39] | MANSFIELD S D, MOONEY C, SADDLER J N. Substrate and enzyme characteristics that limit cellulose hydrolysis [J]. Biotechnology Progress, 1999, 15 (5): 804-816. |
[40] | FAN L, LEE Y H, BEARDMORE D. The influence of major structural features of cellulose on rate of enzymatic hydrolysis [J]. Biotechnology and Bioengineering, 1981, 23 (2): 419-424. |
[41] | FAN L, LEE Y H, BEARDMORE D H. Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis [J]. Biotechnology and Bioengineering, 1980, 22 (1): 177-199. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[4] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[5] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[6] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[7] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[8] | Qian WANG, Shenyong LI, Shuai KANG, Wei PANG, Longlong HAO, Shenjun QIN. Research progress of pretreatment technology for efficient utilization of coal ash [J]. CIESC Journal, 2023, 74(3): 1010-1032. |
[9] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[10] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[11] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[12] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[13] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[14] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[15] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||