CIESC Journal ›› 2017, Vol. 68 ›› Issue (5): 2074-2080.DOI: 10.11949/j.issn.0438-1157.20161733
Previous Articles Next Articles
HE Jiamin, MENG Jia, ZHANG Yong, LI Jianzheng
Received:
2016-12-12
Revised:
2017-01-14
Online:
2017-05-05
Published:
2017-05-05
Supported by:
supported by the Major Science and Technology Program of Water Pollution Control and Treatment (2013ZX07201007) and the Science and Technology Department of Heilongjiang Province (GC13C303).
何佳敏, 孟佳, 张永, 李建政
通讯作者:
李建政
基金资助:
国家水体污染控制与治理科技重大专项项目(2013ZX07201007);黑龙江省应用技术研究与开发计划项目(GC13C303)。
CLC Number:
HE Jiamin, MENG Jia, ZHANG Yong, LI Jianzheng. Effect of lower temperature on performance of upflow microaerobic sludge reactor treating manure-free piggery wastewater with high NH4+-N and low COD/TN ratio[J]. CIESC Journal, 2017, 68(5): 2074-2080.
何佳敏, 孟佳, 张永, 李建政. 温度降低对UMSR处理高氨氮低碳氮比养猪废水效能的影响[J]. 化工学报, 2017, 68(5): 2074-2080.
[1] | 董继柱, 赵晋远, 李艳春. 我国养猪产业的现状及发展前景[J]. 南方农机, 2016, (1): 37. DONG J Z, ZHAO J Y, LI Y C. The present situation and development prospect of pig industry in China[J]. Southern Farm Machinery, 2016, (1): 37. |
[2] | 张庆东, 耿如林, 戴晔. 规模化猪场清粪工艺比选分析[J]. 中国畜牧兽医, 2013, 40(2): 232-235. ZHANG Q D, GENG R L, DAI Y. Comparison analysis of dung treatment technology on scale pig farms[J]. China Animal Husbandry and Veterinary Medicine, 2013, 40(2): 232-235. |
[3] | 刘永丰, 许振成, 吴根义, 等. 清粪方式对养猪废水中污染物迁移转化的影响[J]. 江苏农业科学, 2012, (6): 318-320. LIU Y F, XU Z C, WU G Y, et al. The effect of manure cleaning way to pollutants migration and transformation in piggery wastewater[J]. Jiangsu Agricultural Science, 2012, (6): 318-320. |
[4] | 段妮娜, 董滨, 何群彪, 等. 规模化养猪废水处理模式现状和发展趋势[J]. 净水技术, 2008, 27(4): 9-15. DUAN N N, DONG B, HE Q B, et al. The present situation and development trend of large scale pig wastewater treatment mode[J]. Water Purification Technology, 2008, 27(4): 9-15. |
[5] | 梁鹏, 谢英, 邱俊. 养猪废水处理工艺应用研究[J]. 江西畜牧兽医杂志, 2012, 15(6): 24-26. LIANG P, XIE Y, QIU J. The applied research of pig wastewater treatment technology[J]. Jiangxi Animal Husbandry and Veterinary Medicine, 2012, 15(6): 24-26. |
[6] | 谢荣, 赵博玮, 李建政, 等. 木质填料床A/O系统处理低C/N 比养猪废水的效能与脱氮机制[J]. 化工学报, 2015, 66(11): 4661-4668. XIE R, ZHAO B W, LI J Z, et al. Treatment of piggery wastewater with low C/N ratio and mechanism for denitrification in wood-packed-bed A/O process[J]. CIESC Journal, 2015, 66(11): 4661-4668. |
[7] | 王欢, 裴伟征, 李旭东, 等. 低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮[J]. 环境科学, 2009, 30(3): 815-821. WANG H, PEI W Z, LI X D, et al. Removing nitrogen from low C/N piggery wastewater using shortcut nitrification denitrification- ANAMMOX [J]. Environmental Science, 2009, 30(3): 815-821. |
[8] | LIM S J, KIM T. Removal of organic matter and nitrogen in swine wastewater using an integrated ion exchange and bioelectrochemical system[J]. Bioresource Technology, 2015, 189: 107-112. |
[9] | 彭永臻, 马斌. 低C/N比条件下高效生物脱氮策略分析[J]. 环境科学学报, 2009, 29(2):225-230. PENG Y Z, MA B. Low C/N ratio under the condition of high efficient biological denitrification strategy analysis[J]. Journal of Environmental Science, 2009, 29(2):225-230. |
[10] | MOLINUEVO B, GARCÍA M C, KARAKASHEV D, et al. Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance[J]. Bioresource Technology, 2009, 100(7): 2171-2175. |
[11] | VAN DONGEN U, JETTEN M, VAN LOOSDRECHT M. The SHARON-ANAMMOX process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001, 44(1): 153. |
[12] | RAMOS I, PEREZ R, REINOSO M, et al. Microaerobic digestion of sewage sludge on an industrial-pilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities[J]. Bioresource Technology, 2014, 164: 338-346. |
[13] | ZHENG S, LI H, CUI C. An upflow microaerobic sludge blanket reactor operating at high organic loading and low dissolved oxygen levels[J]. Biotechnology Letters, 2011, 33(4): 693-697. |
[14] | 高立杰, 肖羽堂, 高冠道, 等. 微氧水处理技术的特性及应用研究进展[J]. 工业用水与废水, 2007, (2): 5-8. GAO L J, XIAO Y T, GAO G D, et al. The characteristics of microaerobic water treatment technology and application research progress[J]. Industrial Water and Wastewater, 2007, (2): 5-8. |
[15] | 董春娟, 刘晓, 吕炳南. 常温处理生活污水微氧EGSB反应器启动运行特性[J]. 南京理工大学学报(自然科学版), 2011, 35(2): 284-288. DONG C J, LIU X, LÜ B N. Startup and performance of micro-aerobic EGSB reactor treating actual domestic wastewater at ambient temperature[J]. Journal of Nanjing University of Science and Technology, 2011, 35(2): 284-288. |
[16] | Meng J, Li J, Li J, et al. Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an upflow microaerobic sludge reactor[J]. Bioresource Technology, 2015, 198: 884 -890. |
[17] | 王成. 升流式微氧反应器处理低C/N比养猪废水效能[D]. 哈尔滨: 哈尔滨工业大学, 2016. WANG C. Pollutant removal efficiency in upflow microaerobic reactor for treating piggery wastewater with low C/N ratio[D]. Harbin: Harbin Institute of Technology, 2016. |
[18] | 国家环境保护总局. 畜禽养殖业污染物排放标准: GB 18596—2001[S]. 2002. Ministry of Environmental Protection. Discharge standardin of pollutants for livestock and poultry breeding: GB 18596—2001[S]. 2002. |
[19] | XU G, XU X, YANG F, et al. Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater treatment[J]. Chemical Engineering Journal, 2012, 213: 338-345. |
[20] | LI J, MENG J, LI J, et al. The effect and biological mechanism of COD/TN ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating manure-free piggery wastewater[J]. Bioresource Technology, 2016, 209: 360-368. |
[21] | 国家环境保护总局. 水和废水监测分析方法[M]. 4 版. 北京: 中国环境科学出版社, 2006. Ministry of Environmental Protection. Detection and Analysis Method of Water and Wastewater[M]. 4th ed. Beijing: China Environment Science Press, 2006. |
[22] | MENG J, LI J, LI J, et al. Efficiency and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating manure-free piggery wastewater with low COD/TN ratio[J]. Bioresource Technology, 2016, 201: 166-173. |
[23] | Rodriguez S A, Gonzalez M A, Martinez T M, et al. The effect of influent characteristics and operational conditions over the performance and microbial community structure of partial nitritation reactors[J]. Water Research, 2014, 6(7): 1905-1924. |
[24] | Shuang D, Ping Z, Huifeng L, et al. Ecological characteristics of anaerobic ammonia oxidizing bacteria[J]. Appl. Microbiol. Biotechol., 2013, 92:1841-1849. |
[25] | 姜体胜, 杨琦, 尚海涛, 等. 温度和pH值对活性污泥法脱氮除磷的影响[J]. 环境工程学报, 2007, (9): 10-14. JIANG T S, YANG Q, SHANG H T, et al. The effect of temperature and pH on the activated sludge process of denitrification and phosphorus removal[J]. Journal of Environmental Engineering, 2007, (9): 10-14. |
[26] | 邓凯文, 李建政, 赵博玮. WFSI处理低C/N比养猪废水的效果及脱氮机制[J]. 中国环境科学, 2016, 36(1): 87-91. DENG K W, LI J Z, ZHAO B W. Efficiency and denitrification mechanism in a wood-chip-framework soil infiltrator treating piggery wastewater with low C/N ratio[J]. China Environment Science, 2016, 36(1): 87-91. |
[27] | 王成, 孟佳, 李玖龄, 等. 升流式微氧生物膜反应器处理高氨氮低C/N比养猪废水的效能[J]. 化工学报, 2016, 67(9): 3895-3901. WANG C, MENG J, LI J L, et al. Pollutant removal efficiency in upflow microaerobic biofilm reactor treating manure-free piggery wastewater with low COD/TN ratio and high NH4+-N[J]. CIESC Journal, 2016, 67(9): 3895-3901. |
[28] | Bernet N, Delgenes N, Akunna J C, et al. Combined anaerobic and aerobic SBR for the treatment of piggery wastewater[J]. Water Research, 2000, 34(2): 611-619. |
[29] | Zhao B, Li J, Leu S. An innovative wood-chip-framework soil infiltrator for treating anaerobic digested swine wastewater and analysis of the microbial community[J]. Bioresource Technology, 2014, 173: 384-391. |
[30] | 李亚新. 活性污泥法理论与技术[M]. 北京: 中国建筑工业出版社, 2007: 308. LI Y X. Activated Sludge Process Theory and Technology[M]. Beijing: China Building Industry Press, 2007: 308. |
[31] | Braker G, Schwarz J, Conrad R. Influence of temperature on the composition and activity of denitrifying soil communities[J]. FEMS Microbiology Ecology, 2010, 73: 134-148. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[4] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Limei SHEN, Boxing HU, Yufei XIE, Weihao ZENG, Xiaoyu ZHANG. Experimental study on heat transfer performance of ultra-thin flat heat pipe [J]. CIESC Journal, 2023, 74(S1): 198-205. |
[7] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[8] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
[9] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[10] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[11] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[14] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[15] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 660
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 389
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||