[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
|
[2] |
BRENNAN B, SPENCER S J, BELSEY N A, et al. Structural, chemical and electrical characterisation of conductive graphene-polymer composite films[J]. Applied Surface Science, 2017, 403:403-412.
|
[3] |
JO G, CHOE M, LEE S, et al. The application of graphene as electrodes in electrical and optical devices[J]. Nanotechnology, 2012, 23(11):112001.
|
[4] |
LI Y, YANG J, SONG J. Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle[J]. Renewable & Sustainable Energy Reviews, 2017, 69:652-663.
|
[5] |
WANG S, LIU N, SU J, et al. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs[J]. ACS Nano, 2017, 11(2):2066-2074.
|
[6] |
WANG J, XIE H, GUO Z. First-principles investigation on thermal properties and infrared spectra of imperfect graphene[J]. Applied Thermal Engineering, 2017, 116:456-462.
|
[7] |
ZHANG T, LI J, CAO Y, et al. Tailoring thermal transport properties of graphene by nitrogen doping[J]. Journal of Nanoparticle Research, 2017, 19(2):48.
|
[8] |
OVID'KO I A. Mechanical properties of graphene[J]. Reviews on Advanced Materials Science, 2013, 34(1):1-11.
|
[9] |
RAFIEE M A, LU W, THOMAS A V, et al. Graphene nanoribbon composites[J]. ACS Nano, 2010, 4(12):7415.
|
[10] |
HU J, LIU Q, SHI L, et al. Silver decorated LaMnO3, nanorod/graphene composite electrocatalysts as reversible metal-air battery electrodes[J]. Applied Surface Science, 2017, 402:61-69.
|
[11] |
KUMAR A, KHAN S, ZULFEQUAR M, et al. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD[J]. Applied Surface Science, 2017, 402:161-167.
|
[12] |
GUO L, KOU X, DING M, et al. Reduced graphene oxide/α-Fe2O3, composite nanofibers for application in gas sensors[J]. Sensors & Actuators B Chemical, 2017, 244:233-242.
|
[13] |
HABIBPOUR O, HE Z S, STRUPINSKI W, et al. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication[J]. Scientific Reports, 2017, 7:41828.
|
[14] |
PARK D W, SCHENDEL A A, MIKAEL S, et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications[J]. Nature Communications, 2014, 5:5258.
|
[15] |
ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum hall effect and berry's phase in grapheme[J]. Nature, 2005, 438(7065):201-204.
|
[16] |
CHEN C, ROSENBLATT S, BOLOTIN K I, et al. Performance of monolayer graphene nanomechanical resonators with electrical readout[J]. Nature Nanotechnology, 2009, 4(12):861.
|
[17] |
马丽, 谭振兵, 谭长玲, 等. 机械剥离法制备石墨烯纳米带及其低温电输运性质研究[J]. 物理学报, 2011, 60(10):595-599. MA L, TAN Z B, TAN C L, et al. Fabrication of graphene nanoribbons through mechanical cleavage and their electronic transport properties at low temperature[J]. Acta Physico-Chimca Sinica, 2011, 60(10):595-599.
|
[18] |
GALVES L A, WOFFORD J M, SOARES G V, et al. The effect of the SiC(0001) surface morphology on the growth of epitaxial mono-layer graphene nanoribbons[J]. Carbon, 2017, 115:162-168.
|
[19] |
PLAUT A S, WURSTBAUER U, WANG S, et al. Exceptionally large migration length of carbon and topographically-facilitated self-limiting molecular beam epitaxial growth of graphene on hexagonal boron nitride[J]. Carbon, 2017, 114:579-584.
|
[20] |
张学敏, 张立国, 钮应喜, 等. 外延生长碳化硅-石墨烯薄膜的制备及表征研究[J]. 功能材料, 2015, 46(4):4140-4143. ZHANG X M, ZHANG L G, NIU Y X, et al. Preparation and characterization of epitaxial SiC-graphene heterogeneous films[J]. Journal of Function Materials, 2015, 46(4):4140-4143.
|
[21] |
YALCIN S E, GALANDE C, KAPPERA R, et al. Direct imaging of charge transport in progressively reduced graphene oxide using electrostatic force microscopy[J]. ACS Nano, 2015, 9(3):2981-2988.
|
[22] |
万武波, 赵宗彬, 胡涵, 等. 柠檬酸钠绿色还原制备石墨烯[J]. 新型炭材料, 2011, 26(1):16-20. WAN W B, ZHAO Z B, HU H, et al. Green reduction of graphene oxide to graphene by sodium citrate[J]. New Carbon Materials, 2011, 26(1):16-20.
|
[23] |
WANG X, LI P, LUEDECKE C, et al. Reduced graphene oxide paper:fabrication by a green thermal reduction method and preliminary study of its in vitro cytotoxicity[J]. Journal of Nano Research, 2017, 45:199-207.
|
[24] |
PETRONE N, DEAN C R, MERIC I, et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene[J]. Nano Letters, 2012, 12(6):2751-2756.
|
[25] |
NAM J, KIM D C, YUN H, et al. Chemical vapor deposition of graphene on platinum:growth and substrate interaction[J]. Carbon, 2017, 111:733-740.
|
[26] |
ZHANG Y, FU Y, EDWARDS M, et al. Chemical vapor deposition grown graphene on Cu-Pt alloys[J]. Materials Letters, 2017, 193:255-258.
|
[27] |
LUO B, GAO E, GENG D, et al. etching-controlled growth of graphene by chemical vapor deposition[J]. Chemical Materials, 2017, 29(3):1022-1027.
|
[28] |
CHEN C, ZHANG Z, XU M, et al. Ingenious design of Cu/Ni substrate for hot filament chemical vapor deposition growth of high quality graphene films[J]. Diamond & Related Materials, 2017, 72:7-12.
|
[29] |
何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8):2888-2894. HE D F, WU J, LIU Z J, et al. Recent advances in preparation of graphene for applications[J]. CIESC Journal, 2015, 66(8):2888-2894.
|
[30] |
VOIRY D, YANG J, KUPFERBERG J, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science, 2016, 353(6306):1413-1416.
|
[31] |
HU H, ZHAO Z B, WAN W B, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25:2219-2223.
|
[32] |
HU H, ZHAO Z B, ZHOU Q, et al. The role of microwave absorption on formation of graphene from graphite oxide[J]. Carbon, 2012, 50(9):3267-3273.
|
[33] |
HUMMERS JR W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1339.
|
[34] |
杨蓉, 王黎晴, 吕梦妮, 等. 锂硫电池石墨烯/纳米硫复合正极材料的制备及电化学性能[J]. 化工学报, 2016, 67(10):4363-4369. YANG R, WANG L Q, LÜ M N, et al. Preparation and electrochemical properties of graphene/nano-sulfur composite as cathode materials for lithium-sulfur batteries[J]. CIESC Journal, 2016, 67(10):4363-4369.
|
[35] |
韩志东, 王建祺. 石墨氧化过程的XRD/XPS的研究[J]. 无机化学学报, 2003, 19(12):1366-1370. HAN Z D, WANG J Q. XRD/XPS study on oxidation of graphite[J]. Chinese Journal of Inorganic Chemistry, 2003, 19(12):1366-1370.
|
[36] |
WANG Z Y, DONG Y F, LI H J, et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nature Communications, 2014, 5:5002.
|