[1] |
杨全红."梦想照进现实"——从富勒烯、碳纳米管到石墨烯[J]. 新型炭材料, 2011, 26(1):1-4. YANG Q H. Dreams may come:from fullerene, carbon nanotubes to graphene[J]. New Carbon Material, 2011, 26(1):1-4.
|
[2] |
郭万林, 王琴. 低维纳米功能材料力-电-磁-热-流耦合特性与器件原理[J]. 南京航空航天大学学报, 2012, 44(5):629-637. GUO W L, WANG Q. Mechanical-electric-magnetic-thermal-fluid coupling behavior and device principle of low-dimensional functional nanomaterials[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5):629-637.
|
[3] |
MA M D, SHEN L M, SHERIDAN J, et al. Friction of water slipping in carbon nanotubes[J]. Physical Review E, 2011, 83(3):036316.
|
[4] |
ZHANG Z Q, ZHANG H W, ZHENG Y G, et al. Gas separation by kinked single-walled carbon nanotubes:molecular dynamics simulations[J]. Physical Review B, 2008, 78(3):035439.
|
[5] |
JOSEPH S, ALURU N R. Why are carbon nanotubes fast transporters of water?[J]. Nano Letters, 2008, 8(2):452-458.
|
[6] |
ZHANG Z Q, DONG X, YE H F, et al. Rapid motion of liquid mercury column in carbon nanotubes driven by temperature gradient[J]. Physical Review E, 2014, 116(7):074307.
|
[7] |
LISTED N. The rise and rise of graphene[J]. Nature Nanotechnology, 2010, 5(11):755.
|
[8] |
STOLLER M D, PARK S, ZHU Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10):3498-3502.
|
[9] |
CHANDRA V, PARK J, CHUN Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J]. ACS Nano, 2010, 4(7):3979-3986.
|
[10] |
COHEN T D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7):3602-3608.
|
[11] |
俎凤霞, 张盼盼, 熊伦, 等. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究[J]. 物理学报, 2017, 66(9):98501. ZU F X, ZHANG P P,XIONG L, et al. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes[J]. Acta Physica Sinica, 2017, 66(9):98501.
|
[12] |
YE H F, ZHANG H W, ZHANG Z Q, et al. Water sheared by charged graphene sheets[J]. Journal of Adhesion Science and Technology, 2012, 26(12-17):1897-1908.
|
[13] |
ZHANG Z Q, DONG X, YE H F, et al. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field[J]. Journal of Applied Physics, 2015, 117(7):074304.
|
[14] |
赵珍阳, 李涛, 李肖音, 等. 液态Ag薄膜在修饰的石墨烯表面的形态演变及其界面性质[J]. 物理学报, 2017, 66(6):361-370. ZHAO Z Y, LI T, LI X Y, et al. Interfacial properties and morphological evolution of liquid Ag film on the modified graphene[J]. Acta Physica Sinica, 2017, 66(6):361-370.
|
[15] |
YANG X, YANG X, LIU S. Molecular dynamics simulation of water transport through graphene-based nanopores:flow behavior and structure characteristics[J]. Chinese Journal of Chemical Engineering, 2015, 23(10):1587-1592.
|
[16] |
董若宇, 曹鹏, 曹桂兴, 等. 直流电场下水中石墨烯定向行为研究[J]. 物理学报, 2017, 66(1):212-219. DONG R Y, CAO P, CAO G X, et al. DC electric field induced orientation of a graphene in water[J]. Acta Physica Sinica, 2017, 66(1):212-219.
|
[17] |
TEWARI S, DHINGRA G, SILOTIA P. Collective dynamics of a nano-fluid:fullerene, C60[J]. International Journal of Modern Physics B, 2010, 24(22):4281-4292.
|
[18] |
BO F. Relationship between the structure of C60 and its lubricity:a review[J]. Lubrication Science, 1997, 9(2):181-193.
|
[19] |
MACIEL C, FILETI E E, RIVELINO R. Note on the free energy of transfer of fullerene C60 simulated by using classical potentials[J]. The Journal of Physical Chemistry B, 2009, 113(20):7045-7048.
|
[20] |
REDMILL P S, CAPPS S L, CUMMINGS P T, et al. A molecular dynamics study of the Gibbs free energy of solvation of fullerene particles in octanol and water[J]. Carbon, 2009, 47(12):2865-2874.
|
[21] |
LABILLE J, MASION A, ZIARELLI F, et al. Hydration and dispersion of C60 in aqueous systems:the nature of water-fullerene interactions[J]. Langmuir, 2009, 25(19):11232-11235.
|
[22] |
COLHERINHAS G, FONSECA T L, FILETI E E. Theoretical analysis of the hydration of C60 in normal and supercritical conditions[J]. Carbon, 2011, 49(1):187-192.
|
[23] |
ETTEFAGHI E, RASHIDI A, AHMADI H, et al. Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures[J]. International Communications in Heat and Mass Transfer, 2013, 48(11):178-182.
|
[24] |
HWANG Y, PARK H S, LEE J K, et al. Thermal conductivity and lubrication characteristics of nanofluids[J]. Current Applied Physics, 2006, 6(1):e67-e71.
|
[25] |
HWANG Y, LEE J K, LEE C H, et al. Stability and thermal conductivity characteristics of nanofluids[J]. Thermochimica Acta, 2007, 455(1/2):70-74.
|
[26] |
WANG C, LU H, WANG Z, et al. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates[J]. Physical Review Letters, 2009, 103(13):137801.
|
[27] |
ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids[M]. Oxford:Oxford University Press, 1989:21.
|
[28] |
BRENNER D W, SHENDEROVA O A, HARRISON J A, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[J]. Journal of Physics:Condensed Matter, 2002, 14(4):783-802.
|
[29] |
ZHANG Z Q, YE H F, LIU Z, et al. Carbon nanotube-based charge-controlled speed-regulating nanoclutch[J]. Journal of Applied Physics, 2012, 111(11):114304.
|
[30] |
凌智勇, 邹涛, 丁建宁, 等. 纳米流体黏度特性[J]. 化工学报, 2012, 63(5):1410-1414. LING Z Y, ZOU T, DING J N, et al. Shear viscosity of nanofluids mixture[J]. CIESC Journal, 2012, 63(5):1410-1414.
|