[1] |
王汉松, 何细藕. 乙烯工艺与技术[M]. 北京:中国石化出版社, 2000:83. WANG H S, HE X O. Ethylene Process and Technology[M]. Beijing:China Petrochemical Press, 2000:83
|
[2] |
刘中民. 甲醇制烯烃[M]. 北京:科学出版社, 2015:41. LIU Z M. Methanol to Olefins[M]. Beijing:Science Press, 2015:41
|
[3] |
CLARENCE D C. Methanol conversion to light olefins[J]. Catalysis Reviews, 1984, 26(3/4):323-345.
|
[4] |
CHEN J Q, BOZZANO A, GLOVER B, et al. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catalysis Today, 2005, 106(1/2/3/4):103-107.
|
[5] |
DEROUANE E G. Molecular shape-selective catalysis by zeolites[M]//Zeolites:Science and Technology. Netherlands:Springer, 1984:347-371.
|
[6] |
刘中民, 黄兴云, 何长青, 等. SAPO-34分子筛的热稳定性及水热稳定性[J]. 催化学报, 1996, 17(6):540-543. LIU Z M, HUANG X Y, HE C Q, et al. Thermal and hydrothermal stability of SAPO-34 molecular sieve[J]. Chinese Journal of Catalysis, 1996, 17(6):540-543.
|
[7] |
HIDAKA T, YOKOSE E. Catalysts for methanol conversion reactions:US6153798[P]. 2000-11-28.
|
[8] |
WANG Q, WANG L, WANG H. Synthesis, characterization and catalytic performance of SAPO-34 molecular sieves for methanol-to-olefin (MTO) reaction[J]. Asia-Pacific Journal of Chemical Engineering, 2011, 6(4):596-605.
|
[9] |
HU H, CAO F, YING W. Study of coke behaviour of catalyst during methanol-to-olefins process based on a special TGA reactor[J]. Chemical Engineering Journal, 2010, 160(2):770-778.
|
[10] |
QI G, XIE Z, YANG W, et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins[J]. Fuel Processing Technology, 2007, 88(5):437-441.
|
[11] |
JUN J W, LEE J S, SEOK H Y. A facile synthesis of SAPO-34 molecular sieves with microwave irradiation in wide reaction conditions[J]. Bulletin of the Korean Chemical Society, 2011, 32(6):1957-1964.
|
[12] |
KANG E A, KIM T W, CHAE H J, et al. Synthesis of mesoporous SAPO-34 zeolite from mesoporous silica materials for methanol to light olefins[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(11):7498-7503.
|
[13] |
LIU Y, WANG L, ZHANG J. Preparation of floral mesoporous SAPO-34 with the aid of fluoride ion[J]. Materials Letters, 2011, 65(14):2209-2212.
|
[14] |
蔡光宇, 刘中民, 何长青, 等. 金属改性小孔磷硅铝型分子筛催化剂及其制备方法和应用:96115362.8[P]. 1997-12-17. CAI G Y, LIU Z M, HE C Q, et al. Porous phosphosilicate aluminum molecular sieve catalyst modified by metal and its preparation and application:96115362.8[P].1997-12-17.
|
[15] |
FENG G, CHENG P, YAN W. Accelerated crystallization of zeolites via hydroxyl free radicals[J]. Science, 2016, 351(2):1188-1191.
|
[16] |
MAJANO G, BORCHARDT L, MITCHELL S, et al. Rediscovering zeolite mechanochemistry -a pathway beyond current synthesis and modification boundaries[J]. Microporous & Mesoporous Materials, 2014, 194(8):106-114.
|
[17] |
NASSER A, MINGELGRIN U. Cheminform abstract:mechanochemistry:a review of surface reactions and environmental applications[J]. Applied Clay Science, 2013, 44(34):141-150.
|
[18] |
ZHANG D, WEI Y, XU L, et al. MgAPSO-34 molecular sieves with various Mg stoichiometries:synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins[J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3):684-692.
|
[19] |
XU L, LIU Z, DU A, et al. Synthesis, characterization, and MTO performance of MeAPSO-34 molecular sieves[J]. Studies in Surface Science & Catalysis, 2004, 147(4):445-450.
|
[20] |
NAWAZ Z, TANG X, ZHANG Q. SAPO-34 supported Pt-Sn-based novel catalyst for propane dehydrogenation to propylene[J]. Catalysis Communications, 2009, 10(14):1925-1930.
|
[21] |
吕金钊. 稀土(La,Y)改性SAPO-34分子筛催化转化甲醇制烯烃研究[D]. 大连:大连理工大学, 2009. LÜ J Z. A study on catalytic of methanol to olefins over rare earth metals (La, Y) modified SAPO-34[D]. Dalian:Dalian University of Technology, 2009.
|
[22] |
KANG M. Methanol conversion on metal-incorporated SAPO-34s (MeAPSO-34s)[J]. Journal of Molecular Catalysis A Chemical, 2000, 160(2):437-444.
|
[23] |
JIAO F L, LI J J, PAN X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277):1065-1068.
|
[24] |
WEI J, GE Q J, YAO R W, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8:15174.
|
[25] |
GAO P, LI S G, BU X N, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nature Chemistry, 2017, doi:10.1038/nchem.2794.
|
[26] |
LEVIN D, VARTUIA J C. Molecular sieve compositions, catalysts thereof, their making and use in conversion processes:US7319178[P]. 2008-9-18.
|
[27] |
AGUAYO A T, GAYUBO A G, VIVANCO R. Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins[J]. Applied Catalysis A General, 2005, 283(1):197-207.
|
[28] |
FREEMAN D, WELLS P R, HUTCHINGS G J. Methanol to hydrocarbons:enhanced aromatic formation using a composite Ga2O3-H-ZSM-5 catalyst[J]. Cheminform, 2002, 33(1):1754-1755.
|
[29] |
GAO Y L, CHEN S L, WEI Y Q, et al. Kinetics of coke formation in the dimethyl ether-to-olefins process over SAPO-34 catalyst[J]. Chemical Engineering Journal, 2017, 326(5):528-539.
|
[30] |
WANG Y, CHEN S L, JIANG Y J, et al. Influence of template content on selective synthesis of SAPO-18, SAPO-18/34 intergrowth and SAPO-34 molecular sieves used for methanol-to-olefins process[J]. RSC Advances, 2016, 6(107):104985-104994
|
[31] |
JANSSENS T. A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts[J]. Journal of Catalysis, 2009, 264(2):130-137.
|