[1] |
CHEUNG P, BHAN A, SUNLEY G J, et al. Site requirements and elementary steps in dimethyl ether carbon catalyzed by acidic zeolites[J]. Journal of Catalysis, 2007, 245(1):110-123.
|
[2] |
CHEUNG P, BHAN A, SUNLEY G J, et al. Selective carbonylation of dimethylether to methyl acetate catalyzed by acidic zeolites[J]. Angewandte Chemie International Edition, 2006, 45(10):1617-1620.
|
[3] |
LIU J, XUE H, HUANG X, et al. Dimethyl ether carbonylation to methyl acetate over HZSM-35[J]. Catalysis Letters, 2010, 139(1/2):33-37.
|
[4] |
BHAN A, ALIAN A D, SUNLE G J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylationof methyls to acetyls[J]. Journal of the American Chemical Society, 2007, 129(16):4919-4924.
|
[5] |
BHAN A, IGLESIA E. A link between reactivity and local structure in acid catalysis on zeolites[J]. Accounts of Chemical Research, 2008, 41(4):559-567.
|
[6] |
SANO T, WAKABAYASHI S, OUMI Y, et al. Synthesis of large mordenite crystals in thepresence of aliphatic alcohol[J]. Micropor. Mesopor. Mater., 2001, 46(1):67-74.
|
[7] |
OZIN G A, KUPERMAN A, STEIN A. Advanced zeolite, materials science[J]. Angew. Chem. Int. Ed., 1989, 28(3):359-376.
|
[8] |
COX S D, GIER T E, STUCKY G D, et al. Inclusion tuning of nonlinear optical materials:switching the SHG of p-nitroaniline and 2-methyl-p-nitroaniline with molecular sieve hosts[J]. J. Am. Chem. Soc., 1988, 110(9):2986-2987.
|
[9] |
BORONAT M, MARTINEZ C, LAW D, et al. Enzyme-like specificity in zeolites:a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. Journal of the American Chemical Society, 2008, 130(48):16316-16323.
|
[10] |
BORONAT M, MARTINEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Physical Chemistry Chemical Physics, 2011, 13(7):2603-2612.
|
[11] |
BLASCO T, BORONAT M, CONCEPCION P, et al. Carbonylation of methanol on metal-acid zeolites:evidence for a mechanism involving a multisite active center[J]. Angewandte Chemie International Edition, 2007, 46(21):3938-3941.
|
[12] |
XUE H, HUANG X, ZHAN E, et al. Selective dealumination of mordenite for enhancing its stability in dimethy ether carbonylation[J]. Catalysis Communications, 2013, 37:75-79.
|
[13] |
ANA P, CARVALHO D, ANGELA M, et al. Modification of MOR by desilication treatments:structural, textural and acidic characterization[J]. Microporous and Mesoporous Materials, 2010, 131:350-357.
|
[14] |
YANG G H, SAN X G, JIANG N, et al. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts[J]. Catalysis Today, 2011, 164(1):425-428.
|
[15] |
LI X G, SAN X G, ZHANG Y, et al. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts[J]. ChemSusChem, 2010, 3(10):1192-1199.
|
[16] |
赵娜, 李新刚, 马新宾, 等. 预处理条件及金属离子改性对HMOR分子筛的DME羰基化性能影响[J].化工学报, 2015, 66(9):3504-3510. ZAO N, LI X G, MA X B, et al. Influence of pretreatment and metal cation modification of H-MOR zeolite on performance of DME carbonylation[J]. CIESC Journal, 2015, 66(9):3504-3510.
|
[17] |
LIU J L, XUE H F, HUANG X M, et al. Stability enhancement of Hmordenite in dimethyl ether carbonylation to methyl acetate by preadsorption of pyridine[J]. China J. Catal., 2010, 31(7):729-738.
|
[18] |
LIU J, XUE H, HUANG X, et al. Dimethyl ether carbonylation to methyl acetate over HZSM-35[J]. Catal. Lett., 2010, 139(1/2):33-37.
|
[19] |
MCQUEEN D, CHICHE B H, FAJULA F, et al. A multitechnique characterization of the acidity of dealuminated mazzite[J]. J. Catal., 1996, 161(2):587-596.
|
[20] |
KERR G T. Intracrystalline rearrangement of constitutive water in hydrogen zeolite Y[J]. Phys. Chem., 1967, 71(12):4155-4156.
|
[21] |
COSTER D, BLUMENFELD A L, FRIPIAT J J. Lewis acid sites and surface aluminum in aluminas and zeolites:a high-resolution NMR study[J]. Phys. Chem., 1994, 98(24):6201-6211.
|
[22] |
BOVERI M, MARQUEZ-ALVAREZ C. Steam and acid dealumination of mordenite characterization and influence on the catalytic performance in linear alkylbenzene synthesis[J].Catalysis Today, 2006, 114(2/3):217-225.
|
[23] |
VAN LAAK A N C, SAGALA S L. Mesoporous mordenites obtained by sequential acid and alkaline treatments-catalysts for cumene production with enhanced accessibility[J]. J. Catal., 2010, 276:170-180.
|
[24] |
VAN LAAK A N C, GOSSELINK R W, SAGALA S L, et al. Alkaline treatment on commercially available aluminum rich mordenite[J]. Appl. Catal. A. Gen., 2010, 382(1):65-72.
|
[25] |
BRUNAUER B, DEMING L S, DENIBG W E. On a theory of the van der Waals adsorption of gases[J]. J. Am. Chem. Soc., 1940, 62:1723-1732.
|
[26] |
肖强, 项寿鹤. 碱处理丝光沸石的表征及其催化合成乙基叔丁基醚的性能[J]. 催化学报, 2005, 26(3):243-247. XIAO Q, XIANG S H. Characterization and catalytic performance of alkali-treated mordenite for synthesis of ethyl tertiary butyl ether[J]. Chinese Journal of Catalysis, 2005, 26(3):243-247.
|
[27] |
GROEN J C, SANO T, MOULIJN J A, et al. Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions[J]. J. Catal., 2007, 251(1):21-27.
|
[28] |
BARZETTI T, SELLI E, MOSCOTTI D, et al. Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts[J]. J. Chem. Soc. Faraday Trans., 1996, 92(21):1401-1407.
|
[29] |
WEI X, SMIRNIOTIS P G. Development and characterization of mesoporosity in ZSM-12 by desilication[J]. Micropor. Mesopor. Mater., 2006, 97(32):97-106.
|