[1] |
ALVRIA P, TOMÁS-PEJÓ E, BALLESTEROS M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review[J]. Bioresource Technology, 2010, 101(13):4851-4861.
|
[2] |
ZHU J Y, PAN X J, ZALESNY R S. Pretreatment of woody biomass for biofuel production:energy efficiency, technologies, and recalcitrance[J]. Applied Microbiology & Biotechnology, 2010, 87(3):847-857.
|
[3] |
HEININGEN A V. Converting a kraft pulp mill into an integrated forest biorefinery[J]. World Pulp & Paper, 2007, 107(6):38-43.
|
[4] |
YU H, REN J, OUYANG J, et al. A new magnesium bisulfite pretreatment(MBSP) development for bio-ethanol production from corn stover[J]. Bioresource Technology, 2016, 199:188-93.
|
[5] |
REN J, LIU L, OUYANG J, et al. Comparative evaluation of magnesium bisulfite pretreatment under different pH values for enzymatic hydrolysis of corn stover[J]. BioResources, 2016, 11:7258-7270.
|
[6] |
WANG J, SUN B, CAO Y, et al. In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by bifidobacteria[J]. Carbohydrate Polymers, 2010, 82(2):419-423.
|
[7] |
MADHUKUMAR M S, MURALIKRISHN A G. Fermentation of xylo-oligosaccharides obtained from wheat bran and bengal gram husk by lactic acid bacteria and bifidobacteria[J]. Journal of Food Science Technology, 2012, 49(6):745-752.
|
[8] |
RUEDA C, CALVO P A, COZ A, et al. Biorefinery options to valorize the spent liquor from sulfite pulping[J]. Journal of Chemical Technology Biotechnology, 2015, 90(12):2218-2226.
|
[9] |
YANG D, LI H, QIN Y, et al. Structure and properties of sodium lignosulfonate with different molecular weight used as dye dispersant[J]. Journal of Dispersion Science and Technology, 2014, 36:532-539.
|
[10] |
QIN Y, YANG D, GU F, et al. Biorefinery lignosulfonates as a dispersant for coal water slurry[J]. Sustainable Chemical Processes, 2016, 4(1):1-8.
|
[11] |
邓永红, 王婷, 楼宏铭, 等. 竹浆黑液高效减水剂与木质素磺酸钠的吸附行为对比[J] 高校化学工程学报, 2016, 30(2):477-483. DENG Y H, WANG T, LOU H M, et al. Comparison of absorption performance between GCL1-JB and SL[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2) 477-483.
|
[12] |
LOU H, ZHOU H, LI X, et al. Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose[J]. Cellulose, 2014, 21(3):1351-1359.
|
[13] |
任继巍, 刘蕾, 钱子俊, 等. 木质素磺酸镁对不同纤维素原料酶解的影响机制[J]. 化工学报, 2017, 68(8):3275-3281. REN J W, LIU L, QIAN Z J, et al. Study on influence mechanism of magnesium lignosulfonates on enzymatic hydrolysis of different cellulose materials[J]. CIESE Journal, 2017, 68(8):3275-3281.
|
[14] |
BHATTACHARYA P K, TODI R K, TIWARI M, et al. Studies on ultrafiltration of spent sulfite liquor using various membranes for the recovery of lignosulphonates[J].Desalination, 2005, 174(3):287-297.
|
[15] |
AREA M C, FELISSIA F E, MARTOS M S, et al. Ultrafiltration of NSSC spent liquors and their use as papermaking additives[J]. Tappi Journal, 2001, 84(6):64-77.
|
[16] |
FERNANDES D L, SILVA C M, XAVIER A M, et al. Fractionation of sulphite spent liquor for biochemical processing using ion exchange resins[J]. Journal of Biotechnology, 2012, 162(4):415-421.
|
[17] |
CAVE G, FATEHI P. Separation of lignosulfonate from spent liquor of neutral sulphite semichemical pulping process via surfactant treatment[J]. Separation and Purification Technology, 2015, 151:39-46.
|
[18] |
FERNÁNDEZ-RODRÍGUEZ J, GARCÍA A, COZ A, et al. Spent sulphite liquor fractionation into lignosulphonates and fermentable sugars by ultrafiltration[J]. Separation and Purification Technology, 2015, 152:172-179.
|
[19] |
HUANG C, JEUCK B, JING D, et al. Novel process for the coproduction of xylo-oligosaccharides, fermentable sugars, and lignosulfonates from hardwood[J]. Bioresource Technology, 2016, 219:600.
|
[20] |
严明芳, 邱学青, 杨东杰, 等. 木质素磺酸盐的分离提纯[J]. 高等学校化学学报, 2008, 29(11):2312-2316. YAN M F, QIU X Q, YANG D J, et al. Separation and purification of lignosulfonate[J]. Chemical Journal of Chinese Universities, 2008, 29(11):2312-2316.
|
[21] |
ZHANG K, YANG S T. In situ recovery of fumaric acid by intermittent adsorption with IRA-900 ion exchange resin for enhanced fumaric acid production by Rhizopus oryzae[J]. Biochemical Engineering Journal, 2015, 96:38-45.
|
[22] |
LIU J Q, CALVERLEY E M, MCADON M H, et al. New carbon molecular sieves for propylene/propane separation with high working capacity and separation factor[J]. Carbon, 2017, 123:273-282.
|
[23] |
高伟, 庞煜霞, 楼宏铭, 等. 大孔吸附树脂对木质素磺酸钠的吸附行为[J].精细化工, 2013, 30(12):1366-1369. GAO W, PANG Y X, LOU H M, et al. Adsorption of sodium of lignosulphonate of macroporous resin[J]. Fine Chemicals, 2013, 30(12):1366-1369.
|
[24] |
CRAMER S M, HOLSTEIN M A. Downstream bioprocessing:recent advances and future promise[J]. Current Opinion in Chemical Engineering, 2011, (1):27-37.
|
[25] |
OUYANG X P, ZHANG P, TAN C M, et al. Isolation of lignosulfonate with low polydispersity index[J]. Chinese Chemical Letter, 2010, 21(12):1479-1481.
|
[26] |
OUYANG X P, ZHANG P, QIU X, et al. Lignosulfonate separation using preparative column chromatography[J]. Industrial & Engineering Chemistry Research, 2011, 50(18):10792-10799.
|
[27] |
OTIENO D O, AHRING B K. The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes:xylo-oligosaccharides(XOS), arabinooligosaccharides (AOS), and mannooligosaccharides(MOS)[J]. Carbohydrate Research, 2012, 360:84-92.
|
[28] |
XIAO X, BIAN J, SUN R C, et al. Autohydrolysis of bamboo(Dendrocalamus giganteus Munro) culm for the production of xylo-oligosaccharides[J]. Bioresource Technology, 2013, 138:63-70.
|
[29] |
AMARETTI A, BERNARDI T, LEONARDI A, et al. Fermentation of xylo-oligosaccharides by Bifidobacterium adolescentis DSMZ 18350:kinetics, metabolism, and β-xylosidase activities[J]. Applied Microbiology & Biotechnology, 2013, 97(7):3109-3117.
|
[30] |
NIETO-DOMÍNGUEZ M, EUGENIO L I D, YORK-DURÁN M J, et al. Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase[J]. Food Chemistry, 2017, 232:105.
|