[1] |
陈力, 冯坚. 氮化硅陶瓷材料的研究现状及其应用[J]. 硬质合金, 2002, 19(4):226-229. CHEN L, FENG J. Research status and application of silicon nitride ceramic materials[J]. Journal of Cemented Carbide, 2002, 19(4):226-229.
|
[2] |
JING G Y, JI H, YANG W Y, et al. Study of the bending modulus of individual silicon nitride nano-belts via atomic force microscopy[J]. Applied Physics A, 2006, 82 (3):475-478.
|
[3] |
HUANG J, HUANG Z, YI S, et al. Fe-catalyzed growth of one-dimensional α-Si3N4 nanostructures and their cathodoluminescence properties[J]. Scientific Reports, 2013, 3:3504.
|
[4] |
GU Y, LU L, ZHANG H, et al. Nitridation of silicon powders catalyzed by cobalt nanoparticles[J]. Journal of the American Ceramic Society, 2015, 98(6):1762-1768.
|
[5] |
王峰, 郝雅娟, 靳国强, 等. 氮化硅纳米线制备过程中反应条件的影响[J]. 物理化学学报, 2007, 23(10):1503-1507. WANG F, HAO Y J, JIN G Q, et al. Effects of the reaction conditions in preparation of Si3N4 nanowires[J]. Acta Physico-Chimica Sinica, 2007, 23(10):1503-1507.
|
[6] |
KIM H Y, PARK J, YANG H. Synthesis of silicon nitride nanowires directly from the silicon substrates[J]. Chemical Physics Letters, 2003, 372(1/2):269-274.
|
[7] |
RAN G Z, YOU L P, DAI L, et al. Catalystless synthesis of crystalline Si3N4/amorphous SiO2 nanocables from silicon substrates and N2[J]. Chemical Physics Letters, 2004, 384(1):94-97.
|
[8] |
WANG F, JIN G Q, GUO X Y. Formation mechanism of Si3N4 nanowires via carbothermal reduction of carbonaceous silica xerogels[J]. Journal of Physical Chemistry B, 2006, 110(30):14546-14549.
|
[9] |
DU H L, ZHANG W, LI Y. Effects of growth parameters on the yield and morphology of Si3N4 microcoil prepared by chemical vapor deposition[J]. Materials Research Bulletin, 2014, 50(2):57-62.
|
[10] |
HUANG J, ZHANG S, HUANG Z, et al. Catalyst-assisted synthesis and growth mechanism of ultra-long single crystal α-Si3N4 nanobelts with strong violet-blue luminescent properties[J]. CrystEngComm, 2012, 14(21):7301-7305.
|
[11] |
RODRIGUEZ M A, MAKHONIN N S, ESCRINA J A, et al. Single crystal β-Si3N4 fibers obtained by self-propagating high temperature synthesis[J]. Advanced Materials, 1995, 7(8):745-747.
|
[12] |
CAO Y G, GE C C, ZHOU Z J, et al. Combustion synthesis of α-Si3N4 whiskers[J]. Journal of Materials Research, 1999, 14(3):876-880.
|
[13] |
GOU X, ZHANG F, EVANS D G, et al. Layered double hydroxide films:synthesis, properties and applications[J]. Chemical Communications, 2010, 46(29):5197-5210.
|
[14] |
段雪. 插层组装与功能材料[M]. 北京:化学工业出版社, 2007:53 DUAN X. Intercalation Assembly and Functional Material[M]. Beijing:Chemical Industry Press, 2007:53
|
[15] |
田桂丽. 氮掺杂纳米碳材料的制备及其电催化性能[D]. 北京:清华大学, 2013. TIAN G L. Synthesis of nitrogen doped nanocarbons and the application in electrocatalysis[D]. Beijing:Tsinghua University, 2013.
|
[16] |
ZHANG F, XIANG X, LI F, et al. Layered double hydroxides as catalytic materials:recent development[J]. Catalysis Surveys from Asia, 2008, 12 (4):253-265.
|
[17] |
XU Z P, ZHANG J, ADEBAJO M O, et al. Catalytic applications of layered double hydroxides and derivatives[J]. ChemInform, 2012, 43(1):139-150.
|
[18] |
MELONI D, MONACI R, SOLINAS V, et al. Characterisation of the active sites in mixed oxides derived from LDH precursors by physico-chemical and catalytic techniques[J]. Applied Catalysis A:General, 2008, 350(1):86-95.
|
[19] |
HE S, AN Z, WEI M, et al. Layered double hydroxide-based catalysts:nanostructure design and catalytic performance[J]. Chemical Communications, 2013, 49(53):5912-5920.
|
[20] |
MOISALA A, NASIBULIN A G, KAUPPINEN E I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes-a review[J]. ChemInform, 2004, 35(3):3011-3035.
|
[21] |
GAN J, HU Y, QIAN Q, et al. Formation of hierarchical structure composed of (Co/Ni)Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation[J]. ACS Applied Materials & Interfaces, 2016, 8(23):14527.
|
[22] |
YIN Y D, RIOUX R M, ERDONMEZ C K, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect[J]. Science, 2004, 304(5671):711-714.
|
[23] |
YIN Y, ERDONMEZ C K, CABOT A, et al. Colloidal synthesis of hollow cobalt sulfide nanocrystals[J]. Advanced Functional Materials, 2010, 16(11):1389-1399.
|
[24] |
TIAN G L, ZHAO M Q, ZHANG B, et al. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation[J]. Journal of Materials Chemistry A, 2014, 2(6):1686-1696.
|
[25] |
YOSHIDA H, SHIMIZU T, UCHIYAMA T, et al. Atomic-scale analysis on the role of molybdenum in iron-catalyzed carbon nanotube growth[J]. Nano Letters, 2009, 9(11):3810-3815.
|
[26] |
解挺, 吴玉程, 张立德. 单晶氮化硅(α-Si3N4)纳米线的制备及其光学性能[J]. 功能材料, 2004, 35(z1):3027-3029. XIE T, WU Y C, ZHANG L D. Synthesis and photoluminescence of single-crystalline α-Si3N4 nanowire[J]. Journal of Function Materials, 2004, 35(z1):3027-3029.
|
[27] |
LI Z, GAO W, MENG A, et al. Large-scale synthesis and Raman and photoluminescence properties of single crystalline β-SiC nanowires periodically wrapped by amorphous SiO2 nanospheres[J]. Journal of Physical Chemistry C, 2009, 113(1):91-96.
|
[28] |
LIU H, HUANG Z, HUANG J, et al. Novel, low-cost solid-liquid-solid process for the synthesis of α-Si3N4 nanowires at lower temperatures and their luminescence properties[J]. Scientific Reports, 2015, 5:17250-17256.
|
[29] |
TESSONNIERJ P, SU D S. Recent progress on the growth mechanism of carbon nanotubes:a review[J]. ChemSusChem, 2011, 4(7):824-847.
|
[30] |
ZHAO M Q, HUANG J Q, ZHANG Q, et al. Stretchable single-walled carbon nanotube double helices derived from molybdenum-containing layered double hydroxides[J]. Carbon, 2011, 49(6):2148-2152.
|
[31] |
魏飞, 骞伟中. 碳纳米管的宏量制备技术[M]. 北京:科学出版社, 2012:153-158. WEI F, QIAN W Z. Macroscale Preparation of Carbon Nanotube[M]. Beijing:Science Press, 2012:153-158.
|