[1] |
王立娟, 闫全英. 熔融盐在太阳能热发电中的应用及性能研究现状[J]. 材料科学, 2015, (5):72-78. WANG L J, YAN Q Y. Research progress of the application and properties of molten salt to solar thermal power[J]. Material Sciences, 2015, (5):72-78.
|
[2] |
SORRELL S. Reducing energy demand:a review of issues, challenges and approaches[J]. Renewable and Sustainable Energy Reviews, 2015, 47:74-82.
|
[3] |
WANG K, WANG Y X, LI K, et al. Energy poverty in China:an index based comprehensive evaluation[J]. Renewable and Sustainable Energy Reviews, 2015, 47:308-323.
|
[4] |
ANDREU P, MONDRAGON R, HERNANDEZ L, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles[J]. Nanoscale Research Letters, 2014, 9(1):582-593.
|
[5] |
ZHAO C Y, JI Y, XU Z. Investigation of the Ca(NO3)2-NaNO3, mixture for latent heat storage[J]. Solar Energy Materials and Solar Cells, 2015, 140:281-288.
|
[6] |
FERNANDEZ A G, USHAK S, GALLEGUILLOS H, et al. Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants[J]. Applied Energy, 2014, 119(15):131-140.
|
[7] |
LIU B, CHEN K, WANG C. Effect of working fluids on organic Rankine cycle for waste heat recovery[J]. Energy, 2004, 29(8):1207-1217.
|
[8] |
LI X, CHEN H, LI H, et al. Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage[J]. Applied Energy, 2015, 159:601-609.
|
[9] |
XU B, MA H, LU Z, et al. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites[J]. Applied Energy, 2015, 160:358-367.
|
[10] |
POMIANOWSKI M, HEISELBERG P, ZHANG Y. Review of thermal energy storage technologies based on PCM application in buildings[J]. Energy and Buildings, 2013, 67(4):56-69.
|
[11] |
SILAKHORI M, METSELAAR H S C, MAHLIA T M I, et al. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2014, 80:491-497.
|
[12] |
GROSU Y, BONDARCHUK O, FAIK A. The effect of humidity, impurities and initial state on the corrosion of carbon and stainless steels in molten HitecXL salt for CSP application[J]. Solar Energy Materials and Solar Cells, 2018, 174:34-41.
|
[13] |
SHAN J, DING J, LU J. Numerical investigation of high-temperature molten salt leakage[J]. Energy Procedia, 2015, 69:2072-2080.
|
[14] |
SARVGHAD M, WILL G, STEINBERG T A. Corrosion of inconel 601 in molten salts for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2017, 172:220-229.
|
[15] |
SARI A, KARAIPEKLI A. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage[J]. Materials Chemistry and Physics, 2008, 109(2):459-464.
|
[16] |
DENG Y, LI J H, et al. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J]. Journal of Materials Science and Technology, 2017, 33(2):198-203.
|
[17] |
GE Z, YE F, LENG G H, et al. Carbonate-salt-based composite materials for medium-and high-temperature thermal energy storage[J]. Particuology, 2014, 15(4):77-81.
|
[18] |
PETRI R J, CLAAR T D, ONG E T. High-temperature salt/ceramic thermal storage phase-change media[C]//Proc. Intersoc. Energy Convers. Eng. Con. f, 1983:1796-1774.
|
[19] |
李爱菊, 张仁元, 柯秀芳,等. Na2SO4/SiO2定形复合储热材料的性能研究[J]. 材料开发与应用, 2003, 18(6):21-23. LI A J, ZHANG R Y, KE X F, et al. Study on properties of Na2SO4/SiO2 shape composite thermal storage material[J]. Material development and Application, 2003, 18(6):21-23.
|
[20] |
张兴雪, 王华, 王胜林. MgO陶瓷基复合相变蓄热材料的制备和性能研究[J]. 工业加热, 2006, 35(1):7-9. ZHANG X X, WANG H, WANG S L. Preparation and properties of MgO ceramic matrix composite phase change thermal storage material[J]. Industrial Heating, 2006, 35(1):7-9.
|
[21] |
QIN Y, LENG G, YU X, et al. Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J]. Powder Technology, 2015, 282:37-42.
|
[22] |
LIU R, ZHANG F, SU W, et al. Impregnation of porous mullite with Na2SO4, phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2015, 134(1):268-274.
|
[23] |
SANG L, CAI M, REN N, et al. Improving the thermal properties of ternary carbonates for concentrating solar power through simple chemical modifications by adding sodium hydroxide and nitrate[J]. Solar Energy Materials and Solar Cells, 2014, 124:61-66.
|
[24] |
WU Y, REN N, WANG T, et al. Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant[J]. Solar Energy, 2011, 85(9):1957-1966.
|
[25] |
FERNANDEZ A G, GALLEGUILLOS H, FUENTEALBA E, et al. Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology[J]. Journal of Thermal Analysis and Calorimetry, 2015, 122(1):1-7.
|
[26] |
ARAKI N, MATSUURA M, MAKINO A, et al. Measurement of thermophysical properties of molten salts:mixtures of alkaline carbonate salts[J]. International Journal of Thermophysics, 1988, 9(6):1071-1080.
|
[27] |
TAO Y, LIN C, HE Y. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material[J]. Energy Conversion and Management, 2015, 97:103-110.
|
[28] |
SANG L, CAI M, ZHAO Y, et al. Mixed metal carbonates/hydroxides for concentrating solar power analyzed with DSC and XRD[J]. Solar Energy Materials and Solar Cells, 2015, 140:167-173.
|
[29] |
JIANG Z, LENG G, YE F, et al. Form-stable LiNO3-NaNO3-KNO3-Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage[J]. Energy Conversion and Management, 2015, 106:165-172.
|
[30] |
XIAO M, FENG B, GONG K. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity[J]. Energy Conversion and Management, 2002, 43(1):103-108.
|
[31] |
WANG S, QIN P, FANG X, et al. A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications[J]. Solar Energy, 2014, 99:283-290.
|