CIESC Journal ›› 2018, Vol. 69 ›› Issue (S1): 136-142.DOI: 10.11949/j.issn.0438-1157.20170914
Previous Articles Next Articles
DING Jiao1, YIN Yaoqi2, BAI Yaohui3, ZHOU Xiangyang1, LIU Qihai1, YIN Guoqiang1
Received:
2017-07-17
Revised:
2017-07-31
Online:
2018-09-30
Published:
2018-09-30
Supported by:
supported by the National Natural Science Foundation of China (21376280), The Science and Technology Plan of Guangdong Province (2017B020216004, 2014B030303004) and The Higher Education "Young Creative Talents" Project Special Funds of Guangdong Province (KA1705081).
丁姣1, 尹垚骐2, 白耀辉3, 周向阳1, 刘其海1, 尹国强1
通讯作者:
尹国强,E-mail:yingq007@163.com
基金资助:
国家自然科学基金项目(21376280);广东省科技计划(2017B020216004;2014B030303004);广东省普通高校青年创新人才项目(KA1705081)。
CLC Number:
DING Jiao, YIN Yaoqi, BAI Yaohui, ZHOU Xiangyang, LIU Qihai, YIN Guoqiang. Fabrication and performance of NiO-BZCYYb anode-supported solid oxide fuel cells (SOFCs) by in-situ dip coating technique[J]. CIESC Journal, 2018, 69(S1): 136-142.
丁姣, 尹垚骐, 白耀辉, 周向阳, 刘其海, 尹国强. 原位浸渍法制备NiO-BZCYYb阳极支撑SOFCs及电化学性能[J]. 化工学报, 2018, 69(S1): 136-142.
[1] | STEELE B C. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃[J]. Solid State Ionics, 2000, 129(1/2/3/4):95-110. |
[2] | MOGENSEN M, SAMMES N M, TOMPSETT G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics, 2000, 129:(1/2/3/4):63-94. |
[3] | KHARTON V V, FIGUEIREDO K M, NAVARRO L. Ceria-based materials for solid oxide fuel cells[J]. J. Mater. Sci., 2001, 36(5):1105-1117. |
[4] | ZHA S W, XIA C R, MENG G Y. Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J]. Journal of Power Sources, 2003, 115(1):44-48. |
[5] | ZHANG X G, ROBERTSON M, DECES-PETIT C. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte[J]. Journal of Power Sources, 2007, 164(2):668-677. |
[6] | EGUCHI K, SETOGUCHI T, INOUE T, et al. Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells[J].Solid State Ionics, 1992,52(1/2/3):165-172. |
[7] | STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J].Nature, 2001, 414(6861):345-352. |
[8] | GOODENOUGH J B. Oxide-ion electrolytes[J]. Annual Review of Materials Research, 2003,33(1):91-128. |
[9] | ATKINSON A. Chemically-induced stresses in gdolinium-doped ceria solid oxide fuel cell electrolytes[J]. Solid State Ionics,1997,95(3/4):249-258. |
[10] | LIU M F, PENG R R, DONG D H, et al. Direct liquid methanol-fueled solid oxide fuel cell[J]. Journal of Power Sources, 2008, 185(1):188-192. |
[11] | SHAO Z, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005):170-173. |
[12] | MENG G Y, JIANG C R, MA J J, et al. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen[J]. Journal of Power Sources, 2007, 173(1):189-193. |
[13] | YIN Y H, ZHU W, XIA C R, et al. Gel-cast NiO-SDC composites as anodes for solid oxide fuel cells[J]. Journal of Power Sources, 2004, 132(1/2):36-41. |
[14] | DUNCAN K L, LEE K T, WACHSMAN E D. Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel cells with mixed conducting electrolytes[J]. Journal of Power Sources, 2011, 196(5):2445-2451. |
[15] | WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058):935-939. |
[16] | QIAN J, ZHU Z, DANG J, et al. Improved performance of solid oxide fuel cell with pulsed laser deposited thin film ceria-zirconia bilayer electrolytes on modified anode substrate[J].Electrochimica Acta, 2013, 92:243-247. |
[17] | PARK J Y, YOON H, WACHSMAN E D. Fabrication and characterization of high-conductivity bilayer electrolytes for intermediate-temperature solid oxide fuel cells[J]. Journal of the American Ceramic Society, 2005, 88(9):2402-2408. |
[18] | AHN J S, PERGOLESI D, CAMARATTA M A, et al. High-performance bilaayered electrolyte intermediate temperature solid oxide fuel cells[J].Electrochemistry Communications, 2009,11(7):1504-1507. |
[19] | LEE K T, JUNG D W, CAMARATTA M A, et al. Gd0.1Ce0.9O1.95/Er0.4Bi1.6O3 bilayered electrolytes fabricated by a simple colloidal route using nano-sized Er0.4Bi1.6O3 powders for high performance low temperature solid oxide fuel cells[J]. Journal of Power Sources, 2012, 205:122-128. |
[20] | TSAI T P, PERRY E, BARNETT S. Low-temperature solid-oxide fuel cells utilizing thin bilayer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(5):L130-L132. |
[21] | JANG W S, HYUN S H, KIM S G. Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC[J]. Journal of Materials Science, 2002, 37(12):2535-2541. |
[22] | KIM S G, YOON S P, NAM S W, et al. Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method[J]. Journal of Power Sources, 2002, 110(1):222-228. |
[23] | CHAN S H, CHEN X J, KHOR K A. A simple bilayer electrolyte model for solid oxide fuel cells[J]. Solid State Ionics, 2003, 158(1/2):29-43. |
[24] | LIU Q L, KHOR K A, CHAN S H, et al. Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilayer electrolyte prepared by wet ceramic co-sintering process[J]. Journal of Power Sources, 2006, 162(2):1036-1042. |
[25] | ZHANG X, GAZZARRI J, ROBERTSON M, et al. Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte[J]. Journal of Power Sources, 2008, 185(2):1049-1055. |
[26] | ZHANG X, ROBERTSON M, DECES-PETIT C, et al. Solid oxide fuel cells with bi-layered electrolyte structure[J]. Journal of Power Sources, 2008, 175(2):800-805. |
[27] | CHO S, KIM Y, KIM J H, et al. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte[J]. Electrochimica Acta, 2011, 56(16):5472-5477. |
[28] | OH E O, WHANG C M, LEE Y R, et al. Extremely thin bilayer electrolyte for solid oxide fuel cells(SOFCs) fabricated by chemical solution deposition(CSD)[J]. Advanced Materials, 2012, 24(25):3373-3377. |
[29] | QIAN J, TAO Z, XIAO J, et al. Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition[J].International Journal of Hydrogen Energy, 2013,38(5):2407-2412. |
[30] | YANG K, WANG J X, XUE Y J, et al. Synthesis, sintering behavior and electrical properties of Ba(Zr0.1Ce0.7Y0.2)O3-δ and Ba(Zr0.1Ce0.7Y0.1Yb0.1) O3-δ proton conductors[J].Ceramics International, 2014, 40(9)B:15073-15081. |
[31] | WANG W, CHEN Y B, WANG F, et al. Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+BaZr0.1Ce0.7Y0.1Yb0.1O3-δ anode for solid oxide fuel cells operating on ethanol[J].Chemical Engineering Science, 2015, 126:22-31. |
[32] | LIU Y, YANG L, LIU M F, et al. Enhanced sinterability of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ by addition of nickel oxide[J]. Journal of Power Sources, 2011, 196(23):9980-9984. |
[33] | SHI Z, SUN W P, LIU W. Synthesis and characterization of BaZr0.3Ce0.5Y0.2-xYbxO3-δ proton conductor for solid oxide fuel cells[J]. Journal of Power Sources, 2014, 245:953-957. |
[34] | CHEN C C, LIU M F, BAI Y H, et al. Anode-supported tubular SOFCs based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte fabricated by dip coating[J].Electrochemistry Communications, 2011, 13(6):615-618. |
[35] | CAO J F, GONG Z, FAN C G, et al. The improvement of barium-containing anode for ceria-based electrolyte with electron-blocking layer[J]. Journal of Alloys and Compounds, 2017, 693:1068-1075. |
[36] | JI Y, LIU J, HE T M, et al. Single intermedium-temperature SOFC prepared by glycine-nitrate process[J]. Journal of Alloys and Compounds, 2003, 353:257-262. |
[37] | AI N, LV Z, CHEN K F, et al. Preparation of Sm0.2Ce0.8O1.9 membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC[J]. Journal of Membrane Science, 2006, 286:255-259. |
[38] | 丁姣, 刘江, 郭为民. 用于制备SOFC电解质膜Sm0.2Ce0.8O1.9的合成及性能研究[J]. 无机材料学报, 2009, 24(1):152-156. DING J, LIU J, GUO W M. Research on the performance of Sm0.2Ce0.8O1.9(SDC) prepared by different methods[J]. Journal of Inorganic Materials, 2009, 24(1):152-156. |
[39] | ZHANG H Z, YANG W S. Highly efficient electro catalysts for oxygen reduction reaction[J].Chemical Communications, 2007, 41:4215-4217. |
[40] | DING D, LIU B, ZHU Z, et al. High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells[J]. Solid State Ionics, 2008, 179(21-26):896-899. |
[41] | 白耀辉. 直接使用化石燃料的固体氧化物燃料电池的研究[D].广州:华南理工大学,2012. BAI Y H. Investigation of direct fossil fuel solid oxide fuel cells[D]. Guangzhou:South China University of Technology, 2012. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[7] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[8] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[9] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[10] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[11] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[14] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[15] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 355
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 439
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||