CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 179-188.DOI: 10.11949/j.issn.0438-1157.20180784
• Biochemical engineering and technology • Previous Articles Next Articles
Tianhua CHEN1,2(),Ruosi ZHANG1,2,Guozhen JIANG1,2,Mingdong YAO1,2,Hong LIU1,2,Ying WANG1,2(),Wenhai XIAO1,2,Yingjin YUAN1,2
Received:
2018-07-11
Revised:
2018-09-09
Online:
2019-01-05
Published:
2019-01-05
Contact:
Ying WANG
陈天华1,2(),张若思1,2,姜国珍1,2,姚明东1,2,刘宏1,2,王颖1,2(),肖文海1,2,元英进1,2
通讯作者:
王颖
作者简介:
陈天华(1993—),女,硕士研究生,<email>13102217875@163.com</email>|王颖(1983—),女,副研究员,<email>ying.wang@tju.edu.cn</email>
基金资助:
CLC Number:
Tianhua CHEN, Ruosi ZHANG, Guozhen JIANG, Mingdong YAO, Hong LIU, Ying WANG, Wenhai XIAO, Yingjin YUAN. Metabolic engineering of Saccharomyces cerevisiae for pinene production[J]. CIESC Journal, 2019, 70(1): 179-188.
陈天华, 张若思, 姜国珍, 姚明东, 刘宏, 王颖, 肖文海, 元英进. 产蒎烯人工酵母细胞的构建[J]. 化工学报, 2019, 70(1): 179-188.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180784
Fuels | Density/(g·ml-1) | Heating value/(MJ·L-1) |
---|---|---|
pinene dimers | 0.938 | 39.5 |
JP-10 | 0.94 | 39.6 |
RJ-5 | 1.08 | 44.9 |
Table 1 Energy density of advanced biofuels
Fuels | Density/(g·ml-1) | Heating value/(MJ·L-1) |
---|---|---|
pinene dimers | 0.938 | 39.5 |
JP-10 | 0.94 | 39.6 |
RJ-5 | 1.08 | 44.9 |
Plasmids/strains | Description | Source |
---|---|---|
plasmids | ||
pRS425K | shuttle plasmid for E. coli and S. cerevisiae, Kanr, LEU2 | this laboratory |
pRS424 | shuttle plasmid for E. coli and S. cerevisiae, Amp, TRP3 | this laboratory |
PRS425K_LDJ04 | pRS425K harboring cassette GPM1t_GAL7p_GPDt | this laboratory |
PRS425K_LDJ09 | pRS425K harboring cassette GPDt_GAL1p_FBA1t | this laboratory |
PRS425K_LDJ10 | pRS425K harboring cassette FBA1t_GAL7p_PGK1t | this laboratory |
PRS425K_LDJ14 | pRS425K harboring cassette PGK1t_GAL3p_CYC1t | this laboratory |
PRS424_LDJ04 | pRS424 harboring cassette GPM1t_GAL7p_GPDt | this study |
ZRS1 | pRS424 harboring cassette GPM1t_GAL7p_PtPS_GPDt | this study |
ZRS2 | pRS425K harboring cassette GPDt_GAL1p_ERG20ww _FBA1t | this study |
ZRS3 | pRS424 harboring cassette GPM1t_GAL7p_tPtPS_GPDt | this study |
ZRS4 | pRS424 harboring cassette GPM1t_GAL7p_ERG20ww -tPtPS_GPDt | this study |
ZRS5 | pRS425K harboring cassette FBA1t_GAL7p_IDI1_PGK1t | this study |
ZRS6 | pRS425K harboring cassette PGK1t_GAL3p_MAF1_CYC1t | this study |
ZRS7 | pRS425K harboring cassette GPDt_GAL1p_ERG20ww _FBA1t_GAL7p _IDI1_PGK1t_GAL3p_MAF1_CYC1t | this study |
S. cerevisiae strains | ||
YJGZ1 | MAT a; URA3-52, TRP1-289, LEU2-3,112, HIS3Δ1, MAL2-8C, SUC2, GAL80 :: IDI1_GAL1,10p_tHMGR | this laboratory |
YJGZ1_HXT1 | YJGZ1, ERG20p_ERG20 :: HXT1p_ERG20 | this study |
SyBE_Sc02090001 | YJGZ1, ZRS1, ZRS2 | this study |
SyBE_Sc02090002 | YJGZ1, ZRS3, ZRS2 | this study |
SyBE_Sc02090003 | YJGZ1, ZRS4, ZRS2 | this study |
SyBE_Sc02090004 | YJGZ1, ZRS3, ZRS7 | this study |
SyBE_Sc02090005 | YJGZ1, ZRS4, ZRS7 | this study |
SyBE_Sc02090006 | YJGZ1_HXT1, ZRS4, ZRS7 | this study |
Table 2 Plasmids and yeast strains involved in this study
Plasmids/strains | Description | Source |
---|---|---|
plasmids | ||
pRS425K | shuttle plasmid for E. coli and S. cerevisiae, Kanr, LEU2 | this laboratory |
pRS424 | shuttle plasmid for E. coli and S. cerevisiae, Amp, TRP3 | this laboratory |
PRS425K_LDJ04 | pRS425K harboring cassette GPM1t_GAL7p_GPDt | this laboratory |
PRS425K_LDJ09 | pRS425K harboring cassette GPDt_GAL1p_FBA1t | this laboratory |
PRS425K_LDJ10 | pRS425K harboring cassette FBA1t_GAL7p_PGK1t | this laboratory |
PRS425K_LDJ14 | pRS425K harboring cassette PGK1t_GAL3p_CYC1t | this laboratory |
PRS424_LDJ04 | pRS424 harboring cassette GPM1t_GAL7p_GPDt | this study |
ZRS1 | pRS424 harboring cassette GPM1t_GAL7p_PtPS_GPDt | this study |
ZRS2 | pRS425K harboring cassette GPDt_GAL1p_ERG20ww _FBA1t | this study |
ZRS3 | pRS424 harboring cassette GPM1t_GAL7p_tPtPS_GPDt | this study |
ZRS4 | pRS424 harboring cassette GPM1t_GAL7p_ERG20ww -tPtPS_GPDt | this study |
ZRS5 | pRS425K harboring cassette FBA1t_GAL7p_IDI1_PGK1t | this study |
ZRS6 | pRS425K harboring cassette PGK1t_GAL3p_MAF1_CYC1t | this study |
ZRS7 | pRS425K harboring cassette GPDt_GAL1p_ERG20ww _FBA1t_GAL7p _IDI1_PGK1t_GAL3p_MAF1_CYC1t | this study |
S. cerevisiae strains | ||
YJGZ1 | MAT a; URA3-52, TRP1-289, LEU2-3,112, HIS3Δ1, MAL2-8C, SUC2, GAL80 :: IDI1_GAL1,10p_tHMGR | this laboratory |
YJGZ1_HXT1 | YJGZ1, ERG20p_ERG20 :: HXT1p_ERG20 | this study |
SyBE_Sc02090001 | YJGZ1, ZRS1, ZRS2 | this study |
SyBE_Sc02090002 | YJGZ1, ZRS3, ZRS2 | this study |
SyBE_Sc02090003 | YJGZ1, ZRS4, ZRS2 | this study |
SyBE_Sc02090004 | YJGZ1, ZRS3, ZRS7 | this study |
SyBE_Sc02090005 | YJGZ1, ZRS4, ZRS7 | this study |
SyBE_Sc02090006 | YJGZ1_HXT1, ZRS4, ZRS7 | this study |
Primer name | Sequence(5'-3') |
---|---|
MAF1-F | GGTCTCCAATGAAAGTATGTTATCACTCTAAAACTG |
MAF1-R | GGTCTCCTTTACTGTAGGGATTCTTCTTGATCTG |
IDI1-BsaI-F | GGTCTCCAATGACTGCCGACAACAATAG |
IDI1-BsaI-R | GGTCTCCTTTATAGCATTCTATGAATTTGCCTG |
tPtPS-BsaI-F | GGTCTCCAATGAGAGGTGGTAAATCTATTGCACC |
tPtPS-BsaI-R | GGTCTCCTTTATAATGGAACAGTTTCAACAACTGTTCTAG |
ERG20ww-GS-F | GGTCTCCATAAGAATGCGGCCGCGGTCTCCAATGGCTTCAGAAAAAGAAATTAGG |
GS-ERG20ww-R | GCTACCGCTACCGCTGCCGCTACCTTTGCTTCTCTTGTAAACTTTGTTCAAG |
GS-tPtPS-F | GGTAGCGGCAGCGGTAGCGGTAGCATGGCTAGAAGAATTGCTGGTCATCATTC |
tPtPS-GS-R | GGTCTCCATAAGAATGCGGCCGCGGTCTCCTTTATAATGGAACAGTTTCAACAACTGTTC |
PHXT1-F | GTGATATCAGATCCACTAGTGGCCTATGCGTGCAGGTCTCATCTGGAATATAATTCC |
PHXT1-R | CTCTCTCCTAATTTCTTTTTCTGAAGCCATGATTTTACGTATATCAACTAGTTGAC |
URA3-Cre-loxp-F | ATTCTTTTTTCAATAGTCGAAGTCAGCTTCAGCTGAAGCTTCGTACGCTGCAGGTC |
URA-Cre-loxp-R | AGATGAGACCTGCAGCATAGGCCACTAGTGGATCTGATATCACCTAATAACTTCG |
Actin-F | GCCTTGGACTTCGAACAAGA |
Actin-R | CCAAACCCAAAACAGAAGGA |
ERG20-F | GCTATACCACGAATATGAAG |
ERG20-R | GAACGCAGTTAAGACATC |
Primer name | Sequence(5'-3') |
---|---|
MAF1-F | GGTCTCCAATGAAAGTATGTTATCACTCTAAAACTG |
MAF1-R | GGTCTCCTTTACTGTAGGGATTCTTCTTGATCTG |
IDI1-BsaI-F | GGTCTCCAATGACTGCCGACAACAATAG |
IDI1-BsaI-R | GGTCTCCTTTATAGCATTCTATGAATTTGCCTG |
tPtPS-BsaI-F | GGTCTCCAATGAGAGGTGGTAAATCTATTGCACC |
tPtPS-BsaI-R | GGTCTCCTTTATAATGGAACAGTTTCAACAACTGTTCTAG |
ERG20ww-GS-F | GGTCTCCATAAGAATGCGGCCGCGGTCTCCAATGGCTTCAGAAAAAGAAATTAGG |
GS-ERG20ww-R | GCTACCGCTACCGCTGCCGCTACCTTTGCTTCTCTTGTAAACTTTGTTCAAG |
GS-tPtPS-F | GGTAGCGGCAGCGGTAGCGGTAGCATGGCTAGAAGAATTGCTGGTCATCATTC |
tPtPS-GS-R | GGTCTCCATAAGAATGCGGCCGCGGTCTCCTTTATAATGGAACAGTTTCAACAACTGTTC |
PHXT1-F | GTGATATCAGATCCACTAGTGGCCTATGCGTGCAGGTCTCATCTGGAATATAATTCC |
PHXT1-R | CTCTCTCCTAATTTCTTTTTCTGAAGCCATGATTTTACGTATATCAACTAGTTGAC |
URA3-Cre-loxp-F | ATTCTTTTTTCAATAGTCGAAGTCAGCTTCAGCTGAAGCTTCGTACGCTGCAGGTC |
URA-Cre-loxp-R | AGATGAGACCTGCAGCATAGGCCACTAGTGGATCTGATATCACCTAATAACTTCG |
Actin-F | GCCTTGGACTTCGAACAAGA |
Actin-R | CCAAACCCAAAACAGAAGGA |
ERG20-F | GCTATACCACGAATATGAAG |
ERG20-R | GAACGCAGTTAAGACATC |
1 | Harvey B G , Wright M E , Quintana R L . High-density renewable fuels based on the selective dimerization of pinenes [J]. Energy & Fuels, 2010, 24(1): 267-273. |
2 | 邹吉军, 张香文, 王莅, 等 . 高密度液体碳氢燃料合成及应用进展 [J]. 含能材料, 2007, (4): 411-415. |
Zou J J , Zhang X W , Wang L , et al . Progress on the synthesis and application of high-density liquid hydrocarbon fuels [J]. Chinese Journal of Energetic Materials, 2007, (4): 411-415. | |
3 | 冯红茹, 杨建明, 秦利, 等 . β-蒎烯合成酶(QH6)在大肠杆菌中的表达及其产β-蒎烯的研究[J]. 生物加工过程, 2015, 13(1): 28-34. |
Feng H R , Yang J M , Qin L , et al . Expression of β-pinene synthase (QH6) in Escherichia coli for the biosynthesis of β-pinene [J]. Chinese Journal of Bioprocess Engineering, 2015, 13(1): 28-34. | |
4 | Clomburg J M , Gonzalez R . Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology [J]. Appl. Microbiol. Biotechnol., 2010, 86(2): 419-434. |
5 | Leonard E , Lim K H , Saw P N , et al . Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli [J]. Appl. Environ. Microbiol., 2007, 73(12): 3877-3886. |
6 | Schmidt-Dannert C , Umeno D , Arnold F H . Molecular breeding of carotenoid biosynthetic pathways [J]. Nat. Biotechnol., 2000, 18(7): 750-753. |
7 | Zhang L , Xiao W H , Wang Y , et al . Chassis and key enzymes engineering for monoterpenes production [J]. Biotechnol. Adv., 2017, 35(8): 1022-1031. |
8 | Niu F , Lu Q , Bu Y , et al . Metabolic engineering for the microbial production of isoprenoids: carotenoids and isoprenoid-based biofuels [J]. Synthetic and Systems Biotechnology, 2017, 2(3): 167-175. |
9 | Kang M , Eom J , Kim Y , et al . Biosynthesis of pinene from glucose using metabolically-engineered [J]. Biotechnology Letters, 2014, 36(10): 2069-2077. |
10 | Sarria S , Wong B , García Martín H , et al . Microbial synthesis of pinene [J]. ACS Synthetic Biology, 2014, 3(7): 466-475. |
11 | Yang J , Nie Q , Ren M , et al . Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene [J]. Biotechnol. Biofuels, 2013, 6(1): 60. |
12 | Zhang X , Mcvay R C , Huang D D , et al . Formation and evolution of molecular products in alpha-pinene secondary organic aerosol [J]. Proc. Natl. Acad. Sci. USA, 2015, 112(46): 14168-14173. |
13 | 邓云祥, 王玉平, 王力昌, 等 . α-蒎烯选择性二聚合及低聚反应研究(Ⅱ):二聚异构体研究 [J]. 高分子学报, 1995, (2): 170-175. |
Deng Y X , Wang Y P , Wang L C , et al . Studies on selective dimerization and oligomerization of α-pinene(Ⅱ): Studies of the dimeric isomers [J]. Acta Polymerica Sinica, 1995, (2): 170-175. | |
14 | Chen K , Huang X , Kan S , et al . Enzymatic construction of highly strained carbocycles [J]. Science, 2018, 360(6384): 71-75. |
15 | Kan S , Huang X , Gumulya Y , et al . Genetically programmed chiral organoborane synthesis [J]. Nature, 2017, 552(7683): 132-136. |
16 | Ajikumar P K , Xiao W H , Tyo K E , et al . Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330(6000): 70-74. |
17 | Jiang G , Yao M , Wang Y , et al . Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2017, 41: 57-66. |
18 | 李博, 梁楠, 刘夺, 等 . 合成8-二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建 [J]. 中国生物工程杂志, 2017, (9): 71-81. |
Li B , Liang N , Liu D , et al . Metabolic engineering of Saccharomyces cerevisiae for production of 8-dimenthylally naringenin [J]. China Biotechnology, 2017, (9): 71-81. | |
19 | Gietz R D . Yeast transformation by the LiAc/SS carrier DNA/PEG method [J]. Methods Mol. Biol., 2014, 1205: 1-12. |
20 | Mathiasen D P , Lisby M . Cell cycle regulation of homologous recombination in Saccharomyces cerevisiae [J]. FEMS Microbiol. Rev., 2014, 38(2): 172-184. |
21 | Peck R F , Dassarma S , Krebs M P . Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker [J]. Mol. Microbiol., 2000, 35(3): 667-676. |
22 | Livak K J , Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 - Δ Δ C T method [J]. Methods, 2001, 25(4): 402-408. |
23 | Szkopinska A , Plochocka D . Farnesyl diphosphate synthase; regulation of product specificity [J]. Acta Biochim. Pol., 2005, 52(1): 45-55. |
24 | Grabinska K , Palamarczyk G . Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase [J]. FEMS Yeast Res., 2002, 2(3): 259-265. |
25 | Ignea C , Pontini M , Maffei M E , et al . Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase [J]. ACS Synth. Biol., 2014, 3(5): 298-306. |
26 | Turner G , Gershenzon J , Nielson E E , et al . Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells [J]. Plant Physiol., 1999, 120(3): 879-886. |
27 | Bohlmann J , Meyer-Gauen G , Croteau R . Plant terpenoid synthases: molecular biology and phylogenetic analysis [J]. Proc. Natl. Acad. Sci. USA, 1998, 95(8): 4126-4133. |
28 | Köllner T G , Schnee C , Gershenzon J , et al . The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes [J]. The Plant Cell, 2004, 16(5): 1115-1131. |
29 | Cao Y , Zhang H , Liu H , et al . Biosynthesis and production of sabinene: current state and perspectives [J]. Applied Microbiology and Biotechnology, 2018, 102(4): 1535-1544. |
30 | Liu J , Zhang W , Du G , et al . Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae [J]. Journal of Biotechnology, 2013, 168(4): 446-451. |
31 | Pluta K , Lefebvre O , Martin N C , et al . Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 2001, 21(15): 5031-5040. |
32 | Clastre M , Bantignies B , Feron G , et al . Purification and characterization of geranyl diphosphate synthase from Vitis vinifera L. cv Muscat de Frontignan cell cultures [J]. Plant Physiol., 1993, 102(1): 205-211. |
33 | Dunlop M J , Dossani Z Y , Szmidt H L , et al . Engineering microbial biofuel tolerance and export using efflux pumps [J]. Molecular Systems Biology, 2011, 7(1): 487. |
34 | Albertsen L , Chen Y , Bach L S , et al . Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes [J]. Appl. Environ. Microbiol., 2011, 77(3): 1033-1040. |
35 | Ohto C , Muramatsu M , Obata S , et al . Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae [J]. Appl. Microbiol. Biotechnol., 2010, 87(4): 1327-1334. |
36 | Zhao J , Li C , Zhang Y , et al . Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2017, 16(1): 17. |
37 | Xie W , Ye L , Lv X , et al . Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 28: 8-18. |
38 | Wang Y , Lim L , Diguistini S , et al . A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees [J]. New Phytol., 2013, 197(3): 886-898. |
39 | Piper P W . The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap [J]. FEMS Microbiol. Lett., 1995, 134(2/3): 121-127. |
40 | Jiang X , Zhang H , Yang J , et al . Induction of gene expression in bacteria at optimal growth temperatures [J]. Appl. Microbiol. Biotechnol., 2013, 97(12): 5423-5431. |
[1] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[2] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[3] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[4] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[5] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[6] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[7] | Wulin ZHOU, Huifang GAO, Yuling WU, Xian ZHANG, Meijuan XU, Taowei YANG, Minglong SHAO, Zhiming RAO. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol [J]. CIESC Journal, 2021, 72(8): 4314-4324. |
[8] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
[9] | WANG Xin, ZHAO Peng, LI Qingyang, TIAN Pingfang. Research advances in semiconductor synthetic biology [J]. CIESC Journal, 2021, 72(5): 2426-2435. |
[10] | Yukun ZHENG, Qing SUN, Zhen CHEN, Huimin YU. Progress for chemicals production via microbial cell factory: selecting several small molecules and macromolecular products as examples [J]. CIESC Journal, 2021, 72(12): 6109-6121. |
[11] | ZHAO Zhenyao, ZHANG Baocai, LI Feng, SONG Hao. Design and construction of exoelectrogens by synthetic biology [J]. CIESC Journal, 2021, 72(1): 468-482. |
[12] | WANG Kaifeng, WANG Jinpeng, WEI Ping, JI Xiaojun. Metabolic engineering of Yarrowia lipolytica to produce fatty acids and their derivatives [J]. CIESC Journal, 2021, 72(1): 351-365. |
[13] | WANG Lian, WU Di, ZHOU Jingwen. Research progress of lignans biosynthesis and their microbial production [J]. CIESC Journal, 2021, 72(1): 320-333. |
[14] | Lei QIN, Jie YU, Xiaoyu NING, Wentao SUN, Chun LI. Synthetic biological system construction and green intelligent biological manufacturing [J]. CIESC Journal, 2020, 71(9): 3979-3994. |
[15] | Hutao GAO, Xiaolin SHEN, Xinxiao SUN, Jia WANG, Qipeng YUAN. Metabolic engineering strategies in biosynthesis of amino acids and their derivatives [J]. CIESC Journal, 2020, 71(9): 4058-4070. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||