CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1390-1400.DOI: 10.11949/j.issn.0438-1157.20181426
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Lianxia HOU(),Zhaoping YUAN,Hongchang QIAO,Jinghong ZHOU(),Xinggui ZHOU
Received:
2018-11-29
Revised:
2019-01-22
Online:
2019-04-05
Published:
2019-04-05
Contact:
Jinghong ZHOU
通讯作者:
周静红
作者简介:
<named-content content-type="corresp-name">侯莲霞</named-content>(1992—),女,硕士研究生,<email>958570030@qq.com</email>|周静红(1971—),女,博士,教授,<email>jhzhou@ecust.edu.cn</email>
基金资助:
CLC Number:
Lianxia HOU, Zhaoping YUAN, Hongchang QIAO, Jinghong ZHOU, Xinggui ZHOU. Mechanistic study on catalytic conversion of glucose into low carbon glycols over nickel promoted tungsten carbide catalyst[J]. CIESC Journal, 2019, 70(4): 1390-1400.
侯莲霞, 袁兆平, 乔鸿昌, 周静红, 周兴贵. Ni-W2C催化葡萄糖氢解制备低碳二元醇反应机理研究[J]. 化工学报, 2019, 70(4): 1390-1400.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181426
T/K | Conversion/% | Yield/% | |||||
---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | Others | ||
393 | 6.4 | 0 | 0 | 0 | 0 | 4.0 | 2.0 |
413 | 27.4 | 0.6 | 0.1 | 1.4 | 0 | 18.8 | 6.5 |
433 | 61.4 | 4.7 | 1.0 | 9.2 | 4.1 | 16.4 | 26.0 |
453 | 86.0 | 7.7 | 2.4 | 29.3 | 9.7 | 12.1 | 24.8 |
473 | 100.0 | 4.7 | 2.4 | 28.0 | 9.4 | 13.4 | 42.1 |
493 | 100.0 | 8.3 | 3.4 | 33.6 | 13.5 | 11.0 | 30.2 |
Table 1 Product distributions of glucose conversion at different temperatures
T/K | Conversion/% | Yield/% | |||||
---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | Others | ||
393 | 6.4 | 0 | 0 | 0 | 0 | 4.0 | 2.0 |
413 | 27.4 | 0.6 | 0.1 | 1.4 | 0 | 18.8 | 6.5 |
433 | 61.4 | 4.7 | 1.0 | 9.2 | 4.1 | 16.4 | 26.0 |
453 | 86.0 | 7.7 | 2.4 | 29.3 | 9.7 | 12.1 | 24.8 |
473 | 100.0 | 4.7 | 2.4 | 28.0 | 9.4 | 13.4 | 42.1 |
493 | 100.0 | 8.3 | 3.4 | 33.6 | 13.5 | 11.0 | 30.2 |
Glucose concentration/%(mass) | Conversion/% | Yield/% | Coking | |||||
---|---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | Others | |||
0.5 | 100 | 7.4 | 3.0 | 52.2 | 15.8 | 5.9 | 15.7 | no |
2 | 100 | 8.3 | 3.4 | 33.6 | 13.5 | 11.0 | 30.2 | no |
5 | 100 | trace | trace | trace | trace | trace | trace | yes |
6.6 | 100 | trace | trace | trace | trace | trace | trace | yes |
10 | 100 | trace | trace | trace | trace | trace | trace | yes |
Table 2 Product distributions of glucose conversion at different initial concentrations
Glucose concentration/%(mass) | Conversion/% | Yield/% | Coking | |||||
---|---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | Others | |||
0.5 | 100 | 7.4 | 3.0 | 52.2 | 15.8 | 5.9 | 15.7 | no |
2 | 100 | 8.3 | 3.4 | 33.6 | 13.5 | 11.0 | 30.2 | no |
5 | 100 | trace | trace | trace | trace | trace | trace | yes |
6.6 | 100 | trace | trace | trace | trace | trace | trace | yes |
10 | 100 | trace | trace | trace | trace | trace | trace | yes |
Reaction pressure/MPa | Conversion/% | Yield/% | |||||
---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | Others | ||
2 | 100 | trace | trace | trace | trace | trace | 100 |
5 | 100 | 1.9 | 0.5 | 6.5 | 3.2 | 22.3 | 65.5 |
7 | 100 | 6.7 | 2.7 | 31.9 | 8.2 | 16.4 | 34.1 |
10 | 100 | 8.3 | 3.4 | 33.6 | 13.5 | 11.0 | 30.2 |
Table 3 Product distributions of glucose conversion at different reaction pressures
Reaction pressure/MPa | Conversion/% | Yield/% | |||||
---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | Others | ||
2 | 100 | trace | trace | trace | trace | trace | 100 |
5 | 100 | 1.9 | 0.5 | 6.5 | 3.2 | 22.3 | 65.5 |
7 | 100 | 6.7 | 2.7 | 31.9 | 8.2 | 16.4 | 34.1 |
10 | 100 | 8.3 | 3.4 | 33.6 | 13.5 | 11.0 | 30.2 |
出峰时间/min | CAS号 | 名称 |
---|---|---|
3.479 | 116-09-6 | 羟基丙酮 |
3.978 | 107-21-1 | 乙二醇 |
4.769 | 57-55-6 | 1,2-丙二醇 |
7.495 | 97-99-4 | 四氢糠醇 |
Table 4 Analysis results of extracted sample by GC-MS
出峰时间/min | CAS号 | 名称 |
---|---|---|
3.479 | 116-09-6 | 羟基丙酮 |
3.978 | 107-21-1 | 乙二醇 |
4.769 | 57-55-6 | 1,2-丙二醇 |
7.495 | 97-99-4 | 四氢糠醇 |
产物分类 | 具体产物 |
---|---|
C6 | 甘露糖,果糖,山梨醇,甘露醇 |
C4 | 赤藓糖醇,苏糖醇 |
C3 | 甘油,1,2-丙二醇,羟基丙酮 |
C2 | 乙二醇 |
Table 5 Product mixture category
产物分类 | 具体产物 |
---|---|
C6 | 甘露糖,果糖,山梨醇,甘露醇 |
C4 | 赤藓糖醇,苏糖醇 |
C3 | 甘油,1,2-丙二醇,羟基丙酮 |
C2 | 乙二醇 |
Base amount | Conversion/% | Yield/% | ||||||
---|---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | C3 | Others | ||
0 | 100 | 5.7 | 2.7 | 30.1 | 10.8 | 15.6 | 13.5 | 34.4 |
6%Ba(OH)2 | 100 | 1.1 | 13.2 | 7.1 | 28.5 | 14.4 | 41.7 | 35.7 |
10%Ba(OH)2 | 100 | 1.5 | 14.4 | 5.1 | 30.0 | 8.7 | 44.4 | 40.3 |
15%Ba(OH)2 | 100 | 1.1 | 8.2 | 3.2 | 25.2 | 13.2 | 33.4 | 50.2 |
Table 6 Effect of base catalyst amount on glucose conversion
Base amount | Conversion/% | Yield/% | ||||||
---|---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | C3 | Others | ||
0 | 100 | 5.7 | 2.7 | 30.1 | 10.8 | 15.6 | 13.5 | 34.4 |
6%Ba(OH)2 | 100 | 1.1 | 13.2 | 7.1 | 28.5 | 14.4 | 41.7 | 35.7 |
10%Ba(OH)2 | 100 | 1.5 | 14.4 | 5.1 | 30.0 | 8.7 | 44.4 | 40.3 |
15%Ba(OH)2 | 100 | 1.1 | 8.2 | 3.2 | 25.2 | 13.2 | 33.4 | 50.2 |
Catalyst amount/g | Yield /% | Coking | |||||
---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | Others | ||
0.5① | trace | trace | trace | trace | trace | 100 | yes |
0.5 | trace | trace | trace | trace | trace | 100 | yes |
1.0 | 4.8 | 3.2 | 18.6 | 4.9 | 22.1 | 43.4 | no |
1.5 | 6.1 | 4.1 | 17.1 | 4.6 | 38.5 | 26.2 | no |
2.0 | 5.6 | 3.8 | 7.7 | 2.8 | 67.1 | 10.2 | no |
3.0 | 6.4 | 3.7 | 9.6 | 3.0 | 66.7 | 8.9 | no |
Table 7 Effect of catalyst amount on 10% glucose conversion
Catalyst amount/g | Yield /% | Coking | |||||
---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | Others | ||
0.5① | trace | trace | trace | trace | trace | 100 | yes |
0.5 | trace | trace | trace | trace | trace | 100 | yes |
1.0 | 4.8 | 3.2 | 18.6 | 4.9 | 22.1 | 43.4 | no |
1.5 | 6.1 | 4.1 | 17.1 | 4.6 | 38.5 | 26.2 | no |
2.0 | 5.6 | 3.8 | 7.7 | 2.8 | 67.1 | 10.2 | no |
3.0 | 6.4 | 3.7 | 9.6 | 3.0 | 66.7 | 8.9 | no |
Catalyst amount/g | Glucose concentration/%(mass) | (Glucose amount/ catalyst amount)/ (g/g) | Yield/% | |||||
---|---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | Others | |||
0.5 | 0.5 | 3.3/1 | 7.4 | 3.0 | 52.2 | 15.8 | 5.9 | 15.7 |
2.0 | 2 | 3.3/1 | 9.4 | 2.9 | 39.9 | 12.9 | 21.2 | 13.7 |
3.03① | 10 | 3.3/1 | 5.7 | 3.7 | 9.6 | 2.9 | 66.7 | 11.4 |
Table 8 Effect of initial glucose concentration on glucose conversion
Catalyst amount/g | Glucose concentration/%(mass) | (Glucose amount/ catalyst amount)/ (g/g) | Yield/% | |||||
---|---|---|---|---|---|---|---|---|
Ery | Gly | EG | 1,2-PG | Sor | Others | |||
0.5 | 0.5 | 3.3/1 | 7.4 | 3.0 | 52.2 | 15.8 | 5.9 | 15.7 |
2.0 | 2 | 3.3/1 | 9.4 | 2.9 | 39.9 | 12.9 | 21.2 | 13.7 |
3.03① | 10 | 3.3/1 | 5.7 | 3.7 | 9.6 | 2.9 | 66.7 | 11.4 |
1 | Kruse A , Funke A , Titirici M M . Hydrothermal conversion of biomass to fuels and energetic materials[J]. Curr. Opin. Chem. Biol., 2013, 17(3): 515-521. |
2 | Ruppert A M , Weinberg K , Palkovits R . Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals[J]. Angew. Chem. Int. Ed., 2012, 51(11): 2564-2601. |
3 | Corma A , Iborra S , Velty A . Chemical routes for the transformation of biomass into chemicals[J]. Chem. Rev., 2007, 107(6): 2411-2502. |
4 | Li Y P , Liao Y H , Cao X F , et al . Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose[J]. Biomass and Bioenergy, 2015, 74: 148-161. |
5 | Zheng M Y , Pang J F , Wang A Q , et al . One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: from fundamental discovery to potential commercialization[J]. Chinese Journal of Catalysis, 2014, 35(5): 602-613. |
6 | Xiao Z H , Jin S H , Pang M , et al . Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts[J]. Green Chem., 2013, 15(4): 891-895. |
7 | Li N X , Zheng Y , Wei L F , et al . Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol[J]. Green Chem., 2017, 19(3): 682-691. |
8 | Pang J F , Zheng M Y , Li X S , et al . Selective conversion of concentrated glucose to 1,2-propylene glycol and ethylene glycol by using RuSn/AC catalysts[J]. Applied Catalysis B: Environmental, 2018, 239: 300-308. |
9 | Liu C W , Zhang C H , Liu K K , et al . Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: a comparative study of active metals[J]. Biomass and Bioenergy, 2015, 72: 189-199. |
10 | Liang D , Liu C W , Deng S P , et al . Aqueous phase hydrogenolysis of glucose to 1,2-propanediol over copper catalysts supported by sulfated spherical carbon[J]. Catalysis Communications, 2014, 54: 108-113. |
11 | Yazdani P , Wang B , Du Y , et al . Lanthanum oxycarbonate modified Cu/Al2O3 catalysts for selective hydrogenolysis of glucose to propylene glycol: base site requirements[J]. Catal. Sci. Technol., 2017, 7(20): 4680-4690. |
12 | Liu C W , Zhang C H , Hao S L , et al . WO x modified Cu/Al2O3 as a high-performance catalyst for the hydrogenolysis of glucose to 1,2-propanediol[J]. Catalysis Today, 2016, 261: 116-127. |
13 | Ji N , Zhang T , Zheng M Y , et al . Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew. Chem. Int. Ed., 2008, 47(44): 8510-8513. |
14 | Wang A Q , Zhang T . One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Acc. Chem. Res., 2013,46(7): 1377-1386. |
15 | Cao Y L , Wang J W , Kang M Q , et al . Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni-WO3/SBA-15 catalysts[J]. RSC Adv., 2015, 5(110): 90904-90912. |
16 | Xiao Z Q , Zhang Q , Chen T T , et al . Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel-tungsten catalysts: influenced by hydroxy groups[J]. Fuel, 2018, 230: 332-343. |
17 | Liu C W , Zhang C H , Sun S , et al . Effect of WO x on bifunctional Pd-WO x /Al2O3 catalysts for the selective hydrogenolysis of glucose to 1,2-propanediol[J]. ACS Catal., 2015, 5(8): 4612-4623. |
18 | Zheng M Y , Wang A Q , Ji N , et al . Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1): 63-66. |
19 | Tai Z J , Zhang J Y , Wang A Q , et al . Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem. Commun., 2012, 48(56): 7052-7054. |
20 | Zhao G H , Zheng M Y , Sun R Y , et al . Ethylene glycol production from glucose over W-Ru catalysts: maximizing yield by kinetic modeling and simulation[J]. AIChE Journal, 2017, 63(6): 2072-2080. |
21 | Zheng M Y , Pang J F , Sun R Y , et al . Selectivity control for cellulose to diols: dancing on eggs[J]. ACS Catal., 2017, 7(3): 1939-1954. |
22 | Hamdy M S , Eissaa M A , Keshk S A . New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol[J]. Green Chem., 2017, 19(21): 5144-5151. |
23 | Srokol Z W , Rothenberg G . Practical issues in catalytic and hydrothermal biomass conversion: concentration effects on reaction pathways[J]. Top. Catal., 2010, 53(15-18): 1258-1263. |
24 | 袁兆平 . Ni-W2C催化葡萄糖氢解制备低碳二元醇反应机理研究[D]. 上海: 华东理工大学, 2014. |
Yuan Z P . Mechanistic study on catalytic conversion of glucose into low carbon glycols over nickel promoted tungsten carbide catalyst[D]. Shanghai: East China University of Science and Technology, 2014. | |
25 | 乔鸿昌 .Ni-W2C/AC催化葡萄糖氢解制备低碳二元醇过程分析及产物调控[D]. 上海: 华东理工大学, 2016. |
Qiao H C . Process analysis and product control of glucose hydrogenolysis to low carbon glycols over Ni-W2C/AC catalyst[D]. Shanghai: East China University of Science and Technology, 2016. | |
26 | Crezee E , Hoffer B W , Berger R J , et al . Three-phase hydrogenation of D-glucose over a carbon supported ruthenium catalyst—mass transfer and kinetics[J]. Applied Catalysis A: General, 2003, 251(1): 1-17 |
27 | Zhao G H , Zheng M Y , Zhang J , et al . Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system[J]. Ind. Eng. Chem. Res., 2013, 52(28): 9566-9572. |
28 | Wang H J , Zhu L L , Peng S , et al . High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst[J]. Renewable Energy, 2012, 37: 192-196. |
29 | Wang T F , Nolte M W , Shanks B H . Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical[J]. Green Chem., 2014, 16(2): 548-572. |
30 | Chuntanapum A , Matsumura Y . Char formation mechanism in supercritical water gasification process: a study of model compounds[J]. Ind. Eng. Chem. Res., 2010, 49(9): 4055-4062 |
31 | Chuntanapum A , Yong T L K , Miyake S , et al . Behavior of 5-HMF in subcritical and supercritical water[J]. Ind. Eng. Chem. Res., 2008,47(9): 2956-2962. |
32 | Pan J X , Li J H , Wang C , et al . Multi-wall carbon nanotubes supported ruthenium for glucose hydrogenation to sorbitol[J]. Reaction Kinetics and Catalysis Letters, 2007, 90(2): 233-242. |
33 | Zhang J Y , Hou B L , Wang A Q , et al . Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT[J]. AIChE Journal, 2015, 61(1): 224-238. |
34 | Choudhary V , Pinar A B , Lobo R F , et al . Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media[J]. ChemSusChem, 2013, 6(12): 2369-2376. |
35 | Gounder R , Davis M E . Titanium-beta zeolites catalyze the stereospecific isomerization of D-glucose to L-sorbose via intramolecular C5–C1 hydride shift[J]. ACS Catal., 2013, 3(7): 1469-1476. |
36 | Rai N , Caratzoulas S , Vlachos D G . Role of silanol group in Sn-beta zeolite for glucose isomerization and epimerization reactions[J]. ACS Catal., 2013, 3(10): 2294-2298. |
37 | Sasaki M , Goto K , Tajima K , et al . Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water[J]. Green Chem., 2002, 4(3): 285-287. |
38 | Matsumura Y . Glucose decomposition kinetics in water at 25 MPa in the temperature range of 448—673 K[J]. Ind. Eng. Chem. Res., 2006, 45(6): 1875-1879. |
39 | KnežEvić D , Swaaij W P M , Kersten S R A . Hydrothermal conversion of biomass(Ⅰ): Glucose conversion in hot compressed water[J]. Ind. Eng. Chem. Res., 2009, 48(10): 4731-4743. |
40 | Sohounloue D K , Montassier C , Barbier J . Catalytic hydrogenolysis of sorbitol[J]. React. Kinet. Catal. Lett., 1983, 22(3/4): 391-397. |
41 | Andrews M A , Klaeren S A . Selective hydrocracking of monosaccharide carbon-carbon single bonds under mild conditions. ruthenium hydride catalyzed formation of glycols[J]. J. Am. Chem. Soc., 1989, 111(11): 4133-4134. |
42 | Montassier C , Giraud D , Barbier J . Polyol conversion by liquid phase heterogeneous catalysis over metals[J]. Studies in Surface Science and Catalysis, 1988, 41: 165-170. |
43 | Wang K , Hawley M C , Furney T D . Mechanism study of sugar and sugar alcohol hydrogenolysis using 1,3-diol model compounds[J]. Ind. Eng. Chem. Res., 1995, 34(11): 3766-3770. |
44 | Ooms R , Dusselier M , Geboers J A , et al . Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation[J]. Green Chem., 2014, 16(2): 695-707. |
45 | Yu Y , Wu H W . Kinetics and mechanism of glucose decomposition in hot-compressed water: effect of initial glucose concentration[J]. Ind. Eng. Chem. Res., 2011, 50(50): 10500-10508. |
46 | 李菲, 夏燕, 应惠娟, 等 . 甘油催化转移氢解制备丙二醇及其反应机理[J]. 浙江工业大学学报, 2012, 40(3): 275-278. |
Li F , Xia Y , Ying H J , et al . The study of catalytic transfer hydrogenolysis of glycerol to propylene glycol and it’s mechanism[J]. Journal of Zhejiang University of Technology, 2012, 40(3): 275-278. | |
47 | Kabyemela B M , Adschiri T , Malaluan R M , et al . Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics[J]. Ind. Eng. Chem. Res., 1999, 38(8): 2888-2895. |
48 | Lima S , Dias A S , Lin Z , et al . Isomerization of D-glucose to D-fructose over metallosilicate solid bases[J]. Applied Catalysis A: General, 2008, 339(1): 21-27. |
49 | 贾松岩, 刘民, 公艳艳, 等 . 水溶液中催化剂量无机碱和有机碱催化葡萄糖异构制果糖[J]. 石油学报(石油加工), 2012, 28(6): 940-949. |
Jia S Y , Liu M , Gong Y Y , et al . Isomerization of glucose to fructose in aqueous solution with a catalytic amount of inorganic or organic base[J]. Acta Petrol. Sin. (Petrol. Proc. Sec.), 2012, 28(6): 940-949. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[5] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[9] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[10] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[11] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[12] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[13] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[14] | Zhen LONG, Jinhang WANG, Yong HE, Deqing LIANG. Characteristics study on hydrates formation from gas mixture under ionic liquid together with kinetic hydrate inhibitors [J]. CIESC Journal, 2023, 74(4): 1703-1711. |
[15] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||