1 |
Kruse A , Funke A , Titirici M M . Hydrothermal conversion of biomass to fuels and energetic materials[J]. Curr. Opin. Chem. Biol., 2013, 17(3): 515-521.
|
2 |
Ruppert A M , Weinberg K , Palkovits R . Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals[J]. Angew. Chem. Int. Ed., 2012, 51(11): 2564-2601.
|
3 |
Corma A , Iborra S , Velty A . Chemical routes for the transformation of biomass into chemicals[J]. Chem. Rev., 2007, 107(6): 2411-2502.
|
4 |
Li Y P , Liao Y H , Cao X F , et al . Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose[J]. Biomass and Bioenergy, 2015, 74: 148-161.
|
5 |
Zheng M Y , Pang J F , Wang A Q , et al . One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: from fundamental discovery to potential commercialization[J]. Chinese Journal of Catalysis, 2014, 35(5): 602-613.
|
6 |
Xiao Z H , Jin S H , Pang M , et al . Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts[J]. Green Chem., 2013, 15(4): 891-895.
|
7 |
Li N X , Zheng Y , Wei L F , et al . Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol[J]. Green Chem., 2017, 19(3): 682-691.
|
8 |
Pang J F , Zheng M Y , Li X S , et al . Selective conversion of concentrated glucose to 1,2-propylene glycol and ethylene glycol by using RuSn/AC catalysts[J]. Applied Catalysis B: Environmental, 2018, 239: 300-308.
|
9 |
Liu C W , Zhang C H , Liu K K , et al . Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: a comparative study of active metals[J]. Biomass and Bioenergy, 2015, 72: 189-199.
|
10 |
Liang D , Liu C W , Deng S P , et al . Aqueous phase hydrogenolysis of glucose to 1,2-propanediol over copper catalysts supported by sulfated spherical carbon[J]. Catalysis Communications, 2014, 54: 108-113.
|
11 |
Yazdani P , Wang B , Du Y , et al . Lanthanum oxycarbonate modified Cu/Al2O3 catalysts for selective hydrogenolysis of glucose to propylene glycol: base site requirements[J]. Catal. Sci. Technol., 2017, 7(20): 4680-4690.
|
12 |
Liu C W , Zhang C H , Hao S L , et al . WO x modified Cu/Al2O3 as a high-performance catalyst for the hydrogenolysis of glucose to 1,2-propanediol[J]. Catalysis Today, 2016, 261: 116-127.
|
13 |
Ji N , Zhang T , Zheng M Y , et al . Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew. Chem. Int. Ed., 2008, 47(44): 8510-8513.
|
14 |
Wang A Q , Zhang T . One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Acc. Chem. Res., 2013,46(7): 1377-1386.
|
15 |
Cao Y L , Wang J W , Kang M Q , et al . Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni-WO3/SBA-15 catalysts[J]. RSC Adv., 2015, 5(110): 90904-90912.
|
16 |
Xiao Z Q , Zhang Q , Chen T T , et al . Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel-tungsten catalysts: influenced by hydroxy groups[J]. Fuel, 2018, 230: 332-343.
|
17 |
Liu C W , Zhang C H , Sun S , et al . Effect of WO x on bifunctional Pd-WO x /Al2O3 catalysts for the selective hydrogenolysis of glucose to 1,2-propanediol[J]. ACS Catal., 2015, 5(8): 4612-4623.
|
18 |
Zheng M Y , Wang A Q , Ji N , et al . Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1): 63-66.
|
19 |
Tai Z J , Zhang J Y , Wang A Q , et al . Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem. Commun., 2012, 48(56): 7052-7054.
|
20 |
Zhao G H , Zheng M Y , Sun R Y , et al . Ethylene glycol production from glucose over W-Ru catalysts: maximizing yield by kinetic modeling and simulation[J]. AIChE Journal, 2017, 63(6): 2072-2080.
|
21 |
Zheng M Y , Pang J F , Sun R Y , et al . Selectivity control for cellulose to diols: dancing on eggs[J]. ACS Catal., 2017, 7(3): 1939-1954.
|
22 |
Hamdy M S , Eissaa M A , Keshk S A . New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol[J]. Green Chem., 2017, 19(21): 5144-5151.
|
23 |
Srokol Z W , Rothenberg G . Practical issues in catalytic and hydrothermal biomass conversion: concentration effects on reaction pathways[J]. Top. Catal., 2010, 53(15-18): 1258-1263.
|
24 |
袁兆平 . Ni-W2C催化葡萄糖氢解制备低碳二元醇反应机理研究[D]. 上海: 华东理工大学, 2014.
|
|
Yuan Z P . Mechanistic study on catalytic conversion of glucose into low carbon glycols over nickel promoted tungsten carbide catalyst[D]. Shanghai: East China University of Science and Technology, 2014.
|
25 |
乔鸿昌 .Ni-W2C/AC催化葡萄糖氢解制备低碳二元醇过程分析及产物调控[D]. 上海: 华东理工大学, 2016.
|
|
Qiao H C . Process analysis and product control of glucose hydrogenolysis to low carbon glycols over Ni-W2C/AC catalyst[D]. Shanghai: East China University of Science and Technology, 2016.
|
26 |
Crezee E , Hoffer B W , Berger R J , et al . Three-phase hydrogenation of D-glucose over a carbon supported ruthenium catalyst—mass transfer and kinetics[J]. Applied Catalysis A: General, 2003, 251(1): 1-17
|
27 |
Zhao G H , Zheng M Y , Zhang J , et al . Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system[J]. Ind. Eng. Chem. Res., 2013, 52(28): 9566-9572.
|
28 |
Wang H J , Zhu L L , Peng S , et al . High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst[J]. Renewable Energy, 2012, 37: 192-196.
|
29 |
Wang T F , Nolte M W , Shanks B H . Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical[J]. Green Chem., 2014, 16(2): 548-572.
|
30 |
Chuntanapum A , Matsumura Y . Char formation mechanism in supercritical water gasification process: a study of model compounds[J]. Ind. Eng. Chem. Res., 2010, 49(9): 4055-4062
|
31 |
Chuntanapum A , Yong T L K , Miyake S , et al . Behavior of 5-HMF in subcritical and supercritical water[J]. Ind. Eng. Chem. Res., 2008,47(9): 2956-2962.
|
32 |
Pan J X , Li J H , Wang C , et al . Multi-wall carbon nanotubes supported ruthenium for glucose hydrogenation to sorbitol[J]. Reaction Kinetics and Catalysis Letters, 2007, 90(2): 233-242.
|
33 |
Zhang J Y , Hou B L , Wang A Q , et al . Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT[J]. AIChE Journal, 2015, 61(1): 224-238.
|
34 |
Choudhary V , Pinar A B , Lobo R F , et al . Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media[J]. ChemSusChem, 2013, 6(12): 2369-2376.
|
35 |
Gounder R , Davis M E . Titanium-beta zeolites catalyze the stereospecific isomerization of D-glucose to L-sorbose via intramolecular C5–C1 hydride shift[J]. ACS Catal., 2013, 3(7): 1469-1476.
|
36 |
Rai N , Caratzoulas S , Vlachos D G . Role of silanol group in Sn-beta zeolite for glucose isomerization and epimerization reactions[J]. ACS Catal., 2013, 3(10): 2294-2298.
|
37 |
Sasaki M , Goto K , Tajima K , et al . Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water[J]. Green Chem., 2002, 4(3): 285-287.
|
38 |
Matsumura Y . Glucose decomposition kinetics in water at 25 MPa in the temperature range of 448—673 K[J]. Ind. Eng. Chem. Res., 2006, 45(6): 1875-1879.
|
39 |
KnežEvić D , Swaaij W P M , Kersten S R A . Hydrothermal conversion of biomass(Ⅰ): Glucose conversion in hot compressed water[J]. Ind. Eng. Chem. Res., 2009, 48(10): 4731-4743.
|
40 |
Sohounloue D K , Montassier C , Barbier J . Catalytic hydrogenolysis of sorbitol[J]. React. Kinet. Catal. Lett., 1983, 22(3/4): 391-397.
|
41 |
Andrews M A , Klaeren S A . Selective hydrocracking of monosaccharide carbon-carbon single bonds under mild conditions. ruthenium hydride catalyzed formation of glycols[J]. J. Am. Chem. Soc., 1989, 111(11): 4133-4134.
|
42 |
Montassier C , Giraud D , Barbier J . Polyol conversion by liquid phase heterogeneous catalysis over metals[J]. Studies in Surface Science and Catalysis, 1988, 41: 165-170.
|
43 |
Wang K , Hawley M C , Furney T D . Mechanism study of sugar and sugar alcohol hydrogenolysis using 1,3-diol model compounds[J]. Ind. Eng. Chem. Res., 1995, 34(11): 3766-3770.
|
44 |
Ooms R , Dusselier M , Geboers J A , et al . Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation[J]. Green Chem., 2014, 16(2): 695-707.
|
45 |
Yu Y , Wu H W . Kinetics and mechanism of glucose decomposition in hot-compressed water: effect of initial glucose concentration[J]. Ind. Eng. Chem. Res., 2011, 50(50): 10500-10508.
|
46 |
李菲, 夏燕, 应惠娟, 等 . 甘油催化转移氢解制备丙二醇及其反应机理[J]. 浙江工业大学学报, 2012, 40(3): 275-278.
|
|
Li F , Xia Y , Ying H J , et al . The study of catalytic transfer hydrogenolysis of glycerol to propylene glycol and it’s mechanism[J]. Journal of Zhejiang University of Technology, 2012, 40(3): 275-278.
|
47 |
Kabyemela B M , Adschiri T , Malaluan R M , et al . Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics[J]. Ind. Eng. Chem. Res., 1999, 38(8): 2888-2895.
|
48 |
Lima S , Dias A S , Lin Z , et al . Isomerization of D-glucose to D-fructose over metallosilicate solid bases[J]. Applied Catalysis A: General, 2008, 339(1): 21-27.
|
49 |
贾松岩, 刘民, 公艳艳, 等 . 水溶液中催化剂量无机碱和有机碱催化葡萄糖异构制果糖[J]. 石油学报(石油加工), 2012, 28(6): 940-949.
|
|
Jia S Y , Liu M , Gong Y Y , et al . Isomerization of glucose to fructose in aqueous solution with a catalytic amount of inorganic or organic base[J]. Acta Petrol. Sin. (Petrol. Proc. Sec.), 2012, 28(6): 940-949.
|