CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 3690-3703.DOI: 10.11949/0438-1157.20190591
• Reviews and monographs • Previous Articles Next Articles
Shanjing YAO(),Linian CAI,Dongqiang LIN
Received:
2019-05-29
Revised:
2019-07-02
Online:
2019-10-05
Published:
2019-10-05
Contact:
Shanjing YAO
通讯作者:
姚善泾
作者简介:
姚善泾(1957—),男,博士,教授,基金资助:
CLC Number:
Shanjing YAO, Linian CAI, Dongqiang LIN. Progress in Aspergillus niger as cell factory for secretory proteins[J]. CIESC Journal, 2019, 70(10): 3690-3703.
姚善泾, 蔡礼年, 林东强. 黑曲霉作为分泌蛋白细胞工厂的研究进展[J]. 化工学报, 2019, 70(10): 3690-3703.
Add to citation manager EndNote|Ris|BibTeX
参考依据 | 大肠杆菌 | 黑曲霉 | 酵母 | 昆虫细胞 | 哺乳动物细胞 | 植物细胞 |
---|---|---|---|---|---|---|
转化难易 | 简单 | 较难 | 一般 | 较难 | 较难 | 较难 |
培养周期 | 1天以内 | 1周左右 | 1周左右 | 1周左右 | 1周左右 | 1月左右 |
培养成本 | 低 | 低 | 低 | 高 | 高 | 较高 |
分泌性能 | 低 | 高 | 较高 | 高 | 高 | 高 |
蛋白折叠 | 低 | 较高 | 较高 | 高 | 高 | 高 |
N-糖基化 | 无 | 哺乳动物型的糖核 | 高比例甘露聚糖 | 与哺乳动物细胞类似 | 哺乳动物细胞类型 | 与哺乳动物细胞类似 |
O-糖基化 | 无 | 有 | 有 | 有 | 有 | 有 |
Table 1 Comparison of different cell expression systems
参考依据 | 大肠杆菌 | 黑曲霉 | 酵母 | 昆虫细胞 | 哺乳动物细胞 | 植物细胞 |
---|---|---|---|---|---|---|
转化难易 | 简单 | 较难 | 一般 | 较难 | 较难 | 较难 |
培养周期 | 1天以内 | 1周左右 | 1周左右 | 1周左右 | 1周左右 | 1月左右 |
培养成本 | 低 | 低 | 低 | 高 | 高 | 较高 |
分泌性能 | 低 | 高 | 较高 | 高 | 高 | 高 |
蛋白折叠 | 低 | 较高 | 较高 | 高 | 高 | 高 |
N-糖基化 | 无 | 哺乳动物型的糖核 | 高比例甘露聚糖 | 与哺乳动物细胞类似 | 哺乳动物细胞类型 | 与哺乳动物细胞类似 |
O-糖基化 | 无 | 有 | 有 | 有 | 有 | 有 |
酶分类 | 酶种类 | 获取方式① |
---|---|---|
纤维素酶 | 内切葡聚糖酶 | D[ |
外切葡聚糖酶 | D[ | |
β-葡萄糖苷酶 | D[ | |
裂解多糖单氧化酶 | P[ | |
半纤维素酶 | 木聚糖酶 | D[ |
木糖苷酶 | D[ | |
甘露聚糖酶 | P[ | |
甘露糖苷酶 | P[ | |
乙酰木聚糖酯酶 | P[ | |
果胶酶 | 果胶甲酯酶 | P[ |
果胶酶 | D[ | |
聚半乳糖醛酸酶 | D[ | |
果胶裂解酶 | D[ | |
淀粉酶 | 葡糖淀粉酶 | D[ |
淀粉酶 | D[ | |
蛋白酶 | 肽酶 | D[ |
角质蛋白酶 | P[ | |
酸性蛋白酶 | D[ | |
氨肽酶 | P[ | |
其他酶 | 脂肪酶 | D[ |
α-葡萄糖苷酶 | D[ | |
植酸酶 | D[ | |
芸香苷酶 | P[ | |
阿魏酸酯酶 | P[ | |
鞣酸酶 | D[ | |
菊粉酶 | E[ | |
天冬酰胺酶 单宁酶 | D[ A[ |
Table 2 Secretases of A. niger
酶分类 | 酶种类 | 获取方式① |
---|---|---|
纤维素酶 | 内切葡聚糖酶 | D[ |
外切葡聚糖酶 | D[ | |
β-葡萄糖苷酶 | D[ | |
裂解多糖单氧化酶 | P[ | |
半纤维素酶 | 木聚糖酶 | D[ |
木糖苷酶 | D[ | |
甘露聚糖酶 | P[ | |
甘露糖苷酶 | P[ | |
乙酰木聚糖酯酶 | P[ | |
果胶酶 | 果胶甲酯酶 | P[ |
果胶酶 | D[ | |
聚半乳糖醛酸酶 | D[ | |
果胶裂解酶 | D[ | |
淀粉酶 | 葡糖淀粉酶 | D[ |
淀粉酶 | D[ | |
蛋白酶 | 肽酶 | D[ |
角质蛋白酶 | P[ | |
酸性蛋白酶 | D[ | |
氨肽酶 | P[ | |
其他酶 | 脂肪酶 | D[ |
α-葡萄糖苷酶 | D[ | |
植酸酶 | D[ | |
芸香苷酶 | P[ | |
阿魏酸酯酶 | P[ | |
鞣酸酶 | D[ | |
菊粉酶 | E[ | |
天冬酰胺酶 单宁酶 | D[ A[ |
蛋白来源 | 蛋白种类 | 表达水平① | 参考文献 |
---|---|---|---|
人 | α1蛋白酶抑制剂 | 12 mg/L | [ |
人 | 白细胞介素-6 | 15 mg/L | [ |
人 | 溶菌酶 | 40 mg/L | [ |
马 | 溶菌酶 | 150 mg/L | [ |
牛 | 肠激酶 | 5 mg/L | [ |
利什曼虫 | 抗原蛋白 | 54 mg/L | [ |
福寿螺 | 纤维素酶 | SDS-PAGE | [ |
杏鲍菇 | 过氧物酶 | 466 U/L | [ |
云芝 | 漆酶 | 2700 U/L | [ |
黄孢原毛平革菌 | 锰过氧物酶 | 100 mg/L | [ |
黄孢原毛平革菌 | 木质素过氧物酶 | Western blot | [ |
里氏木霉 | 木聚糖酶,内切葡聚糖酶 | SDS-PAGE | [ |
嗜热子囊菌,里氏木霉 | 29个纤维素酶 | SDS-PAGE | [ |
白曲霉 | 酸性蛋白酶 | 9972 U/ml | [ |
米黑根毛霉 | 脂肪酶 | 15 U/ml | [ |
梨囊鞭菌属R | 纤维素酶 | SDS-PAGE | [ |
朱红密孔菌 | 漆酶 | SDS-PAGE | [ |
Caldariomyces fumago | 氯化物过氧物酶 | SDS-PAGE | [ |
海栖热袍菌 | 木聚糖酶 | 500 mg/L | [ |
解淀粉芽孢杆菌 | 纤维素酶 | SDS-PAGE | [ |
Table 3 Proteins heterologously expressed in A. niger
蛋白来源 | 蛋白种类 | 表达水平① | 参考文献 |
---|---|---|---|
人 | α1蛋白酶抑制剂 | 12 mg/L | [ |
人 | 白细胞介素-6 | 15 mg/L | [ |
人 | 溶菌酶 | 40 mg/L | [ |
马 | 溶菌酶 | 150 mg/L | [ |
牛 | 肠激酶 | 5 mg/L | [ |
利什曼虫 | 抗原蛋白 | 54 mg/L | [ |
福寿螺 | 纤维素酶 | SDS-PAGE | [ |
杏鲍菇 | 过氧物酶 | 466 U/L | [ |
云芝 | 漆酶 | 2700 U/L | [ |
黄孢原毛平革菌 | 锰过氧物酶 | 100 mg/L | [ |
黄孢原毛平革菌 | 木质素过氧物酶 | Western blot | [ |
里氏木霉 | 木聚糖酶,内切葡聚糖酶 | SDS-PAGE | [ |
嗜热子囊菌,里氏木霉 | 29个纤维素酶 | SDS-PAGE | [ |
白曲霉 | 酸性蛋白酶 | 9972 U/ml | [ |
米黑根毛霉 | 脂肪酶 | 15 U/ml | [ |
梨囊鞭菌属R | 纤维素酶 | SDS-PAGE | [ |
朱红密孔菌 | 漆酶 | SDS-PAGE | [ |
Caldariomyces fumago | 氯化物过氧物酶 | SDS-PAGE | [ |
海栖热袍菌 | 木聚糖酶 | 500 mg/L | [ |
解淀粉芽孢杆菌 | 纤维素酶 | SDS-PAGE | [ |
1 | DavyA M, KildegaardH F, AndersenM R. Cell factory engineering[J]. Cell Systems, 2017, 4(3): 262-275. |
2 | van DijlJ M, HeckerM. Bacillus subtilis: from soil bacterium to super-secreting cell factory[J]. Microbial Cell Factories, 2013, 12(1): 3. |
3 | LiJ, NeubauerP. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides[J]. New Biotechnology, 2014, 31(6): 579-585. |
4 | MorelloE, Bermúdez-HumaránL G, LlullD, et al. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion[J]. Journal of Molecular Microbiology and Biotechnology, 2007, 14(1/2/3): 48-58. |
5 | ChenW, QiJ, WuP, et al. Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(2/3): 401-417. |
6 | PscheidtB, GliederA. Yeast cell factories for fine chemical and API production[J]. Microbial Cell Factories, 2008, 7(1): 25. |
7 | 高教琪, 段兴鹏, 周雍进. 酵母细胞工厂生产脂肪酸及其衍生物[J]. 生物加工过程, 2018, 16(1): 19-30. |
GaoJ Q, DuanX P,ZhouY J. Production of fatty acids and their derivatives by yeast cell factories[J]. Chinese Journal of Bioprocess Engineering, 2018, 16(1): 19-30. | |
8 | PuntP J, van BiezenN, ConesaA, et al. Filamentous fungi as cell factories for heterologous protein production[J]. Trends in Biotechnology, 2002, 20(5): 200-206. |
9 | DrugmandJ, SchneiderY, AgathosS N. Insect cells as factories for biomanufacturing[J]. Biotechnology Advances, 2012, 30(5): 1140-1157. |
10 | XuJ, DolanM C, MedranoG, et al. Green factory: plants as bioproduction platforms for recombinant proteins[J]. Biotechnology Advances, 2012, 30(5): 1171-1184. |
11 | O'CallaghanP M, JamesD C. Systems biotechnology of mammalian cell factories[J]. Briefings in Functional Genomics and Proteomics, 2008, 7(2): 95-110. |
12 | WangC, PflegerB F, KimS W. Reassessing Escherichia coli as a cell factory for biofuel production[J]. Current Opinion in Biotechnology, 2017, 45: 92-103. |
13 | CereghinoJ L, CreggJ M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiology Reviews, 2000, 24(1): 45-66. |
14 | DinnisD M, JamesD C. Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature?[J]. Biotechnology and Bioengineering, 2005, 91(2): 180-189. |
15 | JinH, OuyangX, HuZ. Enhancement of epoxide hydrolase production by 60Co gamma and UV irradiation mutagenesis of Aspergillus niger ZJB-09103[J]. Biotechnology and Applied Biochemistry, 2017, 64(3): 392-399. |
16 | OttenheimC, WernerK A, ZimmermannW, et al. Improved endoxylanase production and colony morphology of Aspergillus niger DSM 26641 by γ-ray induced mutagenesis[J]. Biochemical Engineering Journal, 2015, 94: 9-14. |
17 | WangS, JiangB, ZhouX, et al. Study of a high-yield cellulase system created by heavy-ion irradiation-induced mutagenesis of Aspergillus niger and mixed fermentation with Trichoderma reesei[J]. Plos One, 2015, 10(12): e144233. |
18 | WardO P. Production of recombinant proteins by filamentous fungi[J]. Biotechnology Advances, 2012, 30(5): 1119-1139. |
19 | MeyerV, WuB, RamA F J. Aspergillus as a multi-purpose cell factory: current status and perspectives[J]. Biotechnology Letters, 2011, 33(3): 469-476. |
20 | FleißnerA, DerschP. Expression and export: recombinant protein production systems for Aspergillus[J]. Applied Microbiology and Biotechnology, 2010, 87(4): 1255-1270. |
21 | WardM, LinC, VictoriaD C, et al. Characterization of humanized antibodies secreted by Aspergillus niger[J]. Applied and Environmental Microbiology, 2004, 70(5): 2567-2576. |
22 | LiM, HongB, LiY. Expression of soluble human tumor necrosis factor receptor I in Aspergillus niger[J]. Chinese Science Bulletin, 2001, 46(11): 918-921. |
23 | BroekhuijsenM P, MatternI E, ContrerasR, et al. Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX-like processing of a glucoamylase-HIL6 fusion protein[J]. Journal of Biotechnology, 1993, 31(2): 135-145. |
24 | NevalainenK M H, Te'OV S J, BergquistP L. Heterologous protein expression in filamentous fungi[J]. Trends in Biotechnology, 2005, 23(9): 468-474. |
25 | 郭艳梅, 郑平, 孙际宾. 黑曲霉作为细胞工厂:知识准备与技术基础[J]. 生物工程学报, 2010, 26(10): 1410-1418. |
GuoY M, ZhengP, SunJ B. Aspergillus niger as a potential cellular factory: prior knowledge and key technology[J]. Chinese Journal of Biotechnology, 2010, 26(10): 1410-1418. | |
26 | ReillyM C, CampenS A, SimmonsB A, et al. Cloning and expression of heterologous cellulases and enzymes in Aspergillus niger[M]// Lübeck M. Cellulase. Humana Press, 2018: 123-134. |
27 | WangS, ChenH, TangX, et al. Molecular tools for gene manipulation in filamentous fungi[J]. Applied Microbiology and Biotechnology, 2017, 101(22): 8063-8075. |
28 | 顾丰颖, 高洁, 何国庆. 曲霉菌细胞工厂的现状及前景[J]. 食品工业科技, 2012, 33(23): 443-447. |
GuF Y, GaoJ, HeG Q. Aspergillus as a potential cell factory: current status and perspectives[J]. Science and Technology of Food Industry, 2012, 33(23): 443-447. | |
29 | MeyerV. Genetic engineering of filamentous fungi — progress, obstacles and future trends[J]. Biotechnology Advances, 2008, 26(2): 177-185. |
30 | PelH J, de WindeJ H, ArcherD B, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88[J]. Nature Biotechnology, 2007, 25(2): 221-231. |
31 | TaniS, KawaguchiT, KobayashiT. Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 4829-4837. |
32 | StrickerA R, MachR L, de GraaffL H. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei)[J]. Applied Microbiology and Biotechnology, 2008, 78(2): 211-220. |
33 | TsukagoshiN, KobayashiT, KatoM. Regulation of the amylolytic and (hemi-)cellulolytic genes in Aspergilli[J]. Journal of General and Applied Microbiology, 2001, 47(1): 1-19. |
34 | TsangA, ButlerG, PowlowskiJ, et al. Analytical and computational approaches to define the Aspergillus niger secretome[J]. Fungal Genetics and Biology, 2009, 46(1): S153-S160. |
35 | JacobsD I, OlsthoornM M A, MailletI, et al. Effective lead selection for improved protein production in Aspergillus niger based on integrated genomics[J]. Fungal Genetics and Biology, 2009, 46(1): 141-152. |
36 | SpohnerS C, MüllerH, QuitmannH, et al. Expression of enzymes for the usage in food and feed industry with Pichia pastoris[J]. Journal of Biotechnology, 2015, 202: 118-134. |
37 | De PourcqK, De SchutterK, CallewaertN. Engineering of glycosylation in yeast and other fungi: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 87(5): 1617-1631. |
38 | CaiL, XuS, LuT, et al. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger[J]. Journal of Biotechnology, 2019, 292: 12-22. |
39 | DobrevG T, ZhekovaB Y. Biosynthesis, purification and characterization of endoglucanase from xylanase producing strain Aspergillus niger B03[J]. Brazilian Journal of Microbiology, 2012, 43(1): 70-77. |
40 | RawatR, KumarS, ChadhaB S, et al. An acidothermophilic functionally active novel GH12 family endoglucanase from Aspergillus niger HO: purification, characterization and molecular interaction studies[J]. Antonie van Leeuwenhoek, 2015, 107(1): 103-117. |
41 | 王红兵, 王荣柱, 陆涛, 等. 一种海洋黑曲霉耐盐内切纤维素酶的分离纯化和酶学性质研究[J]. 高校化学工程学报, 2016, 30(2): 410-416. |
WangH B, WangR Z, LuT, et al. Purification and characterization of a halotolerant endoglucanase from marine Aspergilla niger[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2): 410-416. | |
42 | LiC, WangH, YanT. Cloning, purification,and characterization of a heat- and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494[J] |
Molecules, 2012, 17(8): 9774-9789. | |
43 | XueD, LiangL, LinD, et al. Thermal inactivation kinetics and secondary structure change of a low molecular weight halostable exoglucanase from a marine Aspergillus niger at high salinities[J]. Applied Biochemistry and Biotechnology, 2017, 183(3): 1111-1125. |
44 | XueD, LiangL, LinD, et al. Halostable catalytic properties of exoglucanase from a marine Aspergillus niger and secondary structure change caused by high salinities[J]. Process Biochemistry, 2017, 58: 85-91. |
45 | WoonJ S, MackeenM M, IlliasR M, et al. Cellobiohydrolase B of Aspergillus niger over-expressed in Pichia pastoris stimulates hydrolysis of oil palm empty fruit bunches[J]. PeerJ, 2017, 5: e3909. |
46 | PatelH, KumarA K, ShahA. Purification and characterization of novel bi-functional GH3 family β-xylosidase/β-glucosidase from Aspergillus niger ADH-11[J]. International Journal of Biological Macromolecules, 2018, 109: 1260-1269. |
47 | OrienteA, TramontinaR, de AndradesD, et al. Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors[J]. Chemical Papers, 2015, 69(8): 1050-1057. |
48 | GongG, ZhengZ, LiuH, et al. Purification and characterization of a β-glucosidase from Aspergillus niger and its application in the hydrolysis of geniposide to genipin[J]. Journal of Microbiology and Biotechnology, 2014, 24(6): 788-794. |
49 | ChangK H, JoM N, KimK, et al. Purification and characterization of a ginsenoside Rb1-hydrolyzing β-glucosidase from Aspergillus niger KCCM 11239[J]. International Journal of Molecular Sciences, 2012, 13(12): 12140-12152. |
50 | ZhaoL, ZhouT, LiX, et al. Expression and characterization of GH3 β-glucosidase from Aspergillus niger NL-1 with high specific activity, glucose inhibition and solvent tolerance[J]. Microbiology, 2013, 82(3): 356-363. |
51 | AliN, XueY, GanL, et al. Purification, characterization, gene cloning and sequencing of a new β-glucosidase from Aspergillus niger BE-21[J]. Applied Biochemistry and Microbiology, 2016, 52(5): 564-571. |
52 | DuL, MaL, MaQ, et al. Hydrolytic boosting of lignocellulosic biomass by a fungal lytic polysaccharide monooxygenase, AnLPMO15g from Aspergillus niger[J]. Industrial Crops and Products, 2018, 126: 309-315. |
53 | 马清. 黑曲霉多糖单加氧酶的克隆表达与协同性研究[D]. 天津: 天津科技大学, 2018. |
MaQ. Cloning of lytic polysaccharide monooxygenases genes from Aspergillus niger and research on its synergism activity[D]. Tianjin: Tianjin University of Science and Technology, 2018. | |
54 | DobrevG, ZhekovaB. Purification and characterization of endoxylanase Xln-2 from Aspergillus niger B03[J]. Turkish Journal of Biology, 2012, 36(1): 7-13. |
55 | TakahashiY, KawabataH, MurakamiS. Analysis of functional xylanases in xylan degradation by Aspergillus niger E-1 and characterization of the GH family 10 xylanase XynVII[J]. SpringerPlus, 2013, 2(1): 1-11. |
56 | Hmida-SayariA, TaktekS, ElgharbiF, et al. Biochemical characterization, cloning and molecular modeling of a detergent and organic solvent-stable family 11 xylanase from the newly isolated Aspergillus niger US368 strain[J]. Process Biochemistry, 2012, 47(12): 1839-1847. |
57 | DoT T, QuyenD T, NguyenT N, et al. Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus niger[J]. Protein Expression and Purification, 2013, 92(2): 196-202. |
58 | LiuT, ZhangJ. High-level expression and characterization of Aspergillus niger ATCC 1015 xylanase B in Komagataella phaffii[J]. Applied Biological Chemistry, 2018, 61(4): 373-381. |
59 | GaoH, YanP, ZhangB, et al. Expression of Aspergillus niger IA-001 endo-β-1,4-xylanase in Pichia pastoris and analysis of the enzymic characterization[J]. Applied Biochemistry and Biotechnology, 2014, 173(8): 2028-2041. |
60 | LiX R, XuH, XieJ, et al. Thermostable sites and catalytic characterization of xylanase XYNB of Aspergillus niger SCTCC 400264[J]. Journal of Microbiology and Biotechnology, 2014, 24(4): 483-488. |
61 | FuG, WangY, WangD, et al. Cloning, expression, and characterization of an GHF 11 xylanase from Aspergillus niger XZ-3S[J]. Indian Journal of Microbiology, 2012, 52(4): 682-688. |
62 | YiX, ShiY, XuH, et al. Hyperexpression of two Aspergillus niger xylanase genes in Escherichia coli and characterization of the gene products[J]. Brazilian Journal of Microbiology, 2010, 41(3): 778-786. |
63 | BoyceA, WalshG. Purification and characterisation of a thermostable β-xylosidase from Aspergillus niger van tieghem of potential application in lignocellulosic bioethanol production[J]. Applied Biochemistry and Biotechnology, 2018, 186(3): 712-730. |
64 | Scott-CraigJ S, BorruschM S, BanerjeeG, et al. Biochemical and molecular characterization of secreted α-xylosidase from Aspergillus niger[J]. Journal of Biological Chemistry, 2011, 286(50): 42848-42854. |
65 | ChoengpanyaK, ArthornthurasukS, Wattana-AmornP, et al. Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28[J]. Protein Expression and Purification, 2015, 115: 132-140. |
66 | Amaro-ReyesA, García-AlmendárezB E, Vázquez-MandujanoD G, et al. Homologue expression of a β-xylosidase from native Aspergillus niger[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(9): 1311-1319. |
67 | LuoW, HuangJ, HuangC, et al. Preliminary X-ray diffraction analysis of thermostable β-1,4-mannanase from Aspergillus niger BK01[J]. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2013, 69(10): 1100-1102. |
68 | LiJ, ZhaoS, TangC, et al. Cloning and functional expression of an acidophilic β-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris[J]. Journal of Agricultural and Food Chemistry, 2012, 60(3): 765-773. |
69 | YuS, LiZ, WangY, et al. High-level expression and characterization of a thermophilic β-mannanase from Aspergillus niger in Pichia pastoris[J]. Biotechnology Letters, 2015, 37(9): 1853-1859. |
70 | FliedrováB, GerstorferováD, KřenV, et al. Production of Aspergillus niger β-mannosidase in Pichia pastoris[J]. Protein Expression and Purification, 2012, 85(2): 159-164. |
71 | ZhaoW, ZhengJ, ZhouH. A thermotolerant and cold-active mannan endo-1,4-β-mannosidase from Aspergillus niger CBS 513.88: constitutive overexpression and high-density fermentation in Pichia pastoris[J]. Bioresource Technology, 2011, 102(16): 7538-7547. |
72 | DemoG, FliedrováB, WeignerováL, et al. Crystallization and preliminary X-ray crystallographic analysis of recombinant β-mannosidase from Aspergillus niger[J]. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2013, 69(3): 288-291. |
73 | WuH, XueY, LiH, et al. Heterologous expression of a new acetyl xylan esterase from Aspergillus niger BE-2 and its synergistic action with xylan-degrading enzymes in the hydrolysis of bamboo biomass[J]. BioResources, 2017, 1(12): 434-447. |
74 | JiangX, ChenP, YinM, et al. Constitutive expression, purification and characterisation of pectin methylesterase from Aspergillus niger in Pichia pastoris for potential application in the fruit juice industry[J]. Journal of the Science of Food and Agriculture, 2013, 93(2): 375-381. |
75 | ZhangZ, DongJ, ZhangD, et al. Expression and characterization of a pectin methylesterase from Aspergillus niger ZJ5 and its application in fruit processing[J]. Journal of Bioscience and Bioengineering, 2018, 126(6): 690-696. |
76 | AhmedI, ZiaM A, HussainM A, et al. Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger: its purification and characterization[J]. Journal of Radiation Research and Applied Sciences, 2019, 9(2): 148-154. |
77 | AnandG, YadavS, YadavD. Production, purification and biochemical characterization of an exo-polygalacturonase from Aspergillus niger MTCC 478 suitable for clarification of orange juice[J]. 3 Biotech, 2017, 7(2):122. |
78 | ZhouH, LiX, GuoM, et al. Secretory expression and characterization of an acidic endo-polygalacturonase from Aspergillus niger SC323 in Saccharomyces cerevisiae[J]. Journal of Microbiology and Biotechnology, 2015, 25(7): 999-1006. |
79 | PoturcuK, OzmenI, BiyikH H. Characterization of an alkaline thermostable pectin lyase from newly isolated Aspergillus niger WHAK1 and its application on fruit juice clarification[J]. Arabian Journal for Science and Engineering, 2017, 42(1): 19-29. |
80 | SlivinskiC T, MachadoA V L, IulekJ, et al. Biochemical characterisation of a glucoamylase from Aspergillus niger produced by solid-state fermentation[J]. Brazilian Archives of Biology and Technology, 2011, 54(3): 559-568. |
81 | BagheriA, KhodarahmiR, MostafaieA. Purification and biochemical characterisation of glucoamylase from a newly isolated Aspergillus niger: relation to starch processing[J]. Food Chemistry, 2014, 161: 270-278. |
82 | GudiS K, GurramkondaC, RatherG, et al. Glucoamylase from a newly isolated Aspergillus niger FME: detergent-mediated production, purification, and characterization[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(4): 427-433. |
83 | WangJ, ZhangY, WangX, et al. Biochemical characterization and molecular mechanism of acid denaturation of a novel α-amylase from Aspergillus niger[J]. Biochemical Engineering Journal, 2018, 137: 222-231. |
84 | WangJ, LiY, LuF. Molecular cloning and biochemical characterization of an α-amylase family from Aspergillus niger[J]. Electronic Journal of Biotechnology, 2018, 32: 55-62. |
85 | LópezD N, GalanteM, RuggieriG, et al. Peptidase from Aspergillus niger NRRL 3: optimization of its production by solid-state fermentation, purification and characterization[J]. LWT, 2018, 98: 485-491. |
86 | NyyssöläA, PihlajaniemiV, JärvinenR, et al. Screening of microbes for novel acidic cutinases and cloning and expression of an acidic cutinase from Aspergillus niger CBS 513.88[J]. Enzyme and Microbial Technology, 2013, 52(4/5): 272-278. |
87 | ChenX, ZhouB, XuM, et al. Prokaryotic expression and characterization of a keratinolytic protease from Aspergillus niger[J]. Biologia, 2015, 70(2): 157-164. |
88 | YinL, HsuT, JiangS. Characterization of acidic protease from Aspergillus niger BCRC 32720[J]. Journal of Agricultural and Food Chemistry, 2013, 61(3): 662-666. |
89 | AhmedI, ZiaM A, IftikharT, et al. Characterization and detergent compatibility of purified protease produced from Aspergillus niger by utilizing agro wastes[J]. Bioresources, 2011, 6(4): 4505-4522. |
90 | 王鑫, 金鹏, 宋鹏, 等. 黑曲霉酸性蛋白酶EXPA的克隆表达与酶学性质解析[J]. 食品与发酵工业, 2019, (3): 40-46. |
WangX, JinP, SongP, et al. Cloning, expression and biochemical characterization of a novel acid protease EXPA from Aspergillus niger[J]. Food and Fermentation Industries, 2019, (3): 40-46. | |
91 | 乔雅丽, 董自星, 宋鹏, 等. 黑曲霉天冬氨酰氨肽酶的分子克隆与酶学性质解析[J]. 食品研究与开发, 2017, 38(24): 181-187. |
QiaoY L, DongZ X, SongP, et al. Molecular cloning and biochemical characterization of anaspartyl aminopeptidase from Aspergillus niger[J]. Food Research and Development, 2017, 38(24): 181-187. | |
92 | LiuG, HuS, LiL, et al. Purification and characterization of a lipase with high thermostability and polar organic solvent-tolerance from Aspergillus niger AN0512[J]. Lipids, 2015, 50(11): 1155-1163. |
93 | OshoM B, AkpanI, AdioO Q. Screening, optimization and characterization of extracellular lipase of Aspergillus niger ATCC 1015[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 5(2): 172-176. |
94 | ZhangX, AiY, XuY, et al. High-level expression of Aspergillus niger lipase in Pichia pastoris: characterization and gastric digestion in vitro[J]. Food Chemistry, 2019, 274: 305-313. |
95 | YangJ, SunJ, YanY. lip2, a novel lipase gene cloned from Aspergillus niger exhibits enzymatic characteristics distinct from its previously identified family member[J]. Biotechnology Letters, 2010, 32(7): 951-956. |
96 | 李杰, 张贺, 王欣, 等. 多拷贝脂肪酶基因在黑曲霉中表达研究[J]. 东北农业大学学报, 2018, 49(4): 49-58. |
LiJ, ZhangH, WangX, et al. Expression of multicopy lipase gene in Aspergillus niger[J]. Journal of Northeast Agricultural University, 2018, 49(4): 49-58. | |
97 | Del MoralS, Barradas-DermitzD M, Aguilar-UscangaM G. Production and biochemical characterization of α-glucosidase from Aspergillus niger ITV-01 isolated from sugar cane bagasse[J]. 3 Biotech, 2018, 8(1): 7. |
98 | ChenD, TongX, ChenS, et al. Heterologous expression and biochemical characterization of α-glucosidase from Aspergillus niger by Pichia pastroris[J]. Journal of Agricultural and Food Chemistry, 2010, 58(8): 4819-4824. |
99 | SoniS K, MagdumA, KhireJ M. Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563[J]. World Journal of Microbiology and Biotechnology, 2010, 26(11): 2009-2018. |
100 | Neira-VielmaA A, AguilarC N, IlyinaA, et al. Purification and biochemical characterization of an Aspergillus niger phytase produced by solid-state fermentation using triticale residues as substrate[J]. Biotechnology Reports, 2018, 17: 49-54. |
101 | GunashreeB S, VenkateswaranG. Extracellular phytase from Aspergillus niger CFR 335: purification and characterization[J]. Journal of Food Science and Technology, 2015, 52(7): 4558-4564. |
102 | BhavsarK, Ravi KumarV, KhireJ M. High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up-scaling, and its partial characterization[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(9): 1407-1417. |
103 | MullaneyE J, LocovareH, SethumadhavanK, et al. Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization[J]. Applied Microbiology and Biotechnology, 2010, 87(4): 1367-1372. |
104 | 陈璐璐, 江连洲, 邓晨旭, 等. 构建食品级植酸酶黑曲霉工程菌[J]. 农业生物技术学报, 2014, 22(9): 1182-1188. |
ChenL L, JiangL Z, DengC X, et al. Construction of phytase food-grade engineering strain of Aspergillus niger[J]. Journal of Agricultural Biotechnology, 2014, 22(9): 1182-1188. | |
105 | ŠimčíkováD, KotikM, WeignerováL, et al. α-L-rhamnosyl-β-D-glucosidase (rutinosidase) from Aspergillus niger: characterization and synthetic potential of a novel diglycosidase[J]. Advanced Synthesis & Catalysis, 2015, 357(1): 107-117. |
106 | ChenX, ZhouM, HuangZ, et al. Codon optimization of Aspergillus niger feruloyl esterase and its expression in Pichia pastoris[J]. Biologia, 2016, 71(6): 626-631. |
107 | 刘君, 江连洲, 高博, 等. 阿魏酸酯酶在黑曲霉中的同源表达[J]. 食品工业科技, 2014, (20): 200-203. |
LiuJ, JiangL Z, GaoB, et al. Homologous expression of ferulic acid esterase in Aspergillus niger[J]. Science and Technology of Food Industry, 2014, (20): 200-203. | |
108 | Al-MraaiS T Y, Al-FekaikiD F, Al-ManhelA J A. Purification and characterization of tannase from the local isolate of Aspergillus niger[J]. Journal of Applied Biology & Biotechnology, 2019, 7(1): 29-34. |
109 | LiuF, WangB, YeY, et al. High level expression and characterization of tannase tan7 using Aspergillus niger SH-2 with low-background endogenous secretory proteins as the host[J]. Protein Expression and Purification, 2018, 144: 71-75. |
110 | YedahalliS S, RehmannL, BassiA. Expression of exo-inulinase gene from Aspergillus niger 12 in E. coli strain Rosetta-gami B (DE3) and its characterization[J]. Biotechnology Progress, 2016, 32(3): 629-637. |
111 | ValaA K, SachaniyaB, DudhagaraD, et al. Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste[J]. International Journal of Biological Macromolecules, 2018, 108: 41-46. |
112 | 李杰, 岳苗苗, 江连洲, 等. 单宁酶基因在黑曲霉中的同源表达[J]. 东北农业大学学报, 2014, 45(7): 61-65. |
LiJ, YueM M, JiangL Z, et al. Tannase gene homologous expressing in Aspergillus niger[J]. Journal of Northeast Agricultural University, 2014, 45(7): 61-65. | |
113 | KarnaukhovaE, OphirY, TrinhL, et al. Expression of human α1-proteinase inhibitor in Aspergillus niger[J]. Microbial Cell Factories, 2007, 6: 34. |
114 | SpencerA, Morozov-RocheL A, NoppeW, et al. Expression, purification, and characterization of the recombinant calcium-binding equine lysozyme secreted by the filamentous fungus Aspergillus niger: comparisons with the production of hen and human lysozymes[J]. Protein Expression and Purification, 1999, 16(1): 171. |
115 | SvetinaM, KrasevecN, Gaberc-PorekarV, et al. Expression of catalytic subunit of bovine enterokinase in the filamentous fungus Aspergillus niger[J]. Journal of Biotechnology, 2000, 76(2/3): 245-251. |
116 | Magaña-OrtízD, FernándezF, LoskeA M, et al. Extracellular expression in Aspergillus niger of an antibody fused to Leishmania sp. antigens[J]. Current Microbiology, 2018, 75(1): 40-48. |
117 | YangP, ZhangH, ZhengZ. Glyceraldehyde-3-phosphate dehydrogenase promoter from enoki mushroom drove gene expression of exogenous cellulase in Aspergillus niger[J]. Biomass Conversion and Biorefinery, 2018, 8(1): 11-17. |
118 | EibesG M, Lú-ChauT A, Ruiz-DueñasF J, et al. Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts[J]. Bioprocess and Biosystems Engineering, 2009, 32(1): 129-134. |
119 | BohlinC, JonssonL J, RothR, et al. Heterologous expression of Trametes versicolor laccase in Pichia pastoris and Aspergillus niger[J]. Applied Biochemistry and Biotechnology, 2006, 129/130/131/132: 195-214. |
120 | ConesaA, van den HondelC A, PuntP J. Studies on the production of fungal peroxidases in Aspergillus niger[J]. Applied and Environmental Microbiology, 2000, 66(7): 3016-3023. |
121 | AifaM S, SayadiS, GargouriA. Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Aspergillus niger[J]. Biotechnology Letters, 1999, 21(10): 849-853. |
122 | ZylS R W V. Constitutive expression of the Trichoderma reesei β-1,4-xylanase gene (xyn2) and the β-1,4-endoglucanase gene (egl) in Aspergillus niger in molasses and defined glucose media[J]. Applied Microbiology and Biotechnology, 2002, 58(4): 461-468. |
123 | Amaike CampenS, LynnJ, SibertS J, et al. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger[J]. Plos One, 2017, 12(12): e189604. |
124 | 董文超. 白曲霉酸性蛋白酶在无孢黑曲霉SH-2中的表达研究[D]. 广州: 华南理工大学, 2018. |
DongW C. Expression of kawachii acid protease in non-spore Aspergillus niger SH-2[D]. Guangzhou: South China University of Technology, 2018. | |
125 | 潘力, 王云艳, 王斌, 等. 根癌农杆菌介导脂肪酶在无孢黑曲霉中的高效表达[J]. 华南理工大学学报(自然科学版), 2012, 40(5): 84-89. |
PanL, WangY Y, WangB, et al. Effective expression of lipase in non-spore Aspergillus nigerviaAgrobacterium tumefaciens-mediated transformation[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(5): 84-89. | |
126 | XueD, LiangL, ZhengG, et al. Expression of Piromyces rhizinflata cellulase in marine Aspergillus niger to enhance halostable cellulase activity by adjusting enzyme-composition[J]. Biochemical Engineering Journal, 2017, 117: 156-161. |
127 | RecordE, PuntP J, ChamkhaM, et al. Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme[J]. European Journal of Biochemistry, 2002, 269(2): 602-609. |
128 | ConesaA, van de VeldeF, van RantwijkF, et al. Expression of the Caldariomyces fumago chloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme[J]. Journal of Biological Chemistry, 2001, 276(21): 17635-17640. |
129 | ZhangJ, PanJ, GuanG, et al. Expression and high-yield production of extremely thermostable bacterial xylanase B in Aspergillus niger[J]. Enzyme and Microbial Technology, 2008, 43(7): 513-516. |
130 | XueD, LinD, GongC, et al. Expression of a bifunctional cellulase with exoglucanase and endoglucanase activities to enhance the hydrolysis ability of cellulase from a marine Aspergillus niger[J]. Process Biochemistry, 2017, 52: 115-122. |
131 | GanzlinM, RinasU. In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques[J]. Journal of Biotechnology, 2008, 135(3): 266-271. |
132 | KlugeJ, TerfehrD, KückU. Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi[J]. Applied Microbiology and Biotechnology, 2018, 102(15): 6357-6372. |
133 | KatoM. An overview of the CCAAT-box binding factor in filamentous fungi: assembly, nuclear translocation, and transcriptional enhancement[J]. Bioscience Biotechnology and Biochemistry, 2005, 69(4): 663-672. |
134 | LiuJ, LiJ, ShinH, et al. Metabolic engineering of Aspergillus oryzae for efficient production of L-malate directly from corn starch[J]. Journal of Biotechnology, 2017, 262: 40-46. |
135 | VerdoesJ C, PuntP J, van den HondelC A M J. Molecular genetic strain improvement for the overproduction of fungal proteins by filamentous fungi[J]. Applied Microbiology and Biotechnology, 1995, 43(2): 195-205. |
136 | KodaA, BogakiT, MinetokiT, et al. High expression of a synthetic gene encoding potato α-glucan phosphorylase in Aspergillus niger[J]. Journal of Bioscience and Bioengineering, 2005, 100(5): 531-537. |
137 | HamannT, LangeL. Discovery, cloning and heterologous expression of secreted potato proteins reveal erroneous pre-mRNA splicing in Aspergillus oryzae[J]. Journal of Biotechnology, 2006, 126(3): 265-276. |
138 | WangH, FengL, NiuD. Relationship between mRNA stability and intron presence[J]. Biochemical and Biophysical Research Communications, 2007, 354(1): 203-208. |
139 | CurranK A, KarimA S, GuptaA, et al. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications[J]. Metabolic Engineering, 2013, 19: 88-97. |
140 | XuY, WangY, LiuT, et al. The GlaA signal peptide substantially increases the expression and secretion of α-galactosidase in Aspergillus niger[J]. Biotechnology Letters, 2018, 40(6): 949-955. |
141 | ValkonenM, WardM, WangH, et al. Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response[J]. Applied and Environmental Microbiology, 2003, 69(12): 6979-6986. |
142 | WuY, SunX, XueX, et al. Overexpressing key component genes of the secretion pathway for enhanced secretion of an Aspergillus niger glucose oxidase in Trichoderma reesei[J]. Enzyme and Microbial Technology, 2017, 106: 83-87. |
143 | CarvalhoN D S P, ArentshorstM, KooistraR, et al. Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger[J]. Applied Microbiology and Biotechnology, 2011, 89(2): 357-373. |
144 | YoonJ, AishanT, MaruyamaJ I, et al. Enhanced production and secretion of heterologous proteins by the filamentous fungus Aspergillus oryzaevia disruption of vacuolar protein sorting receptor gene Aovps10[J]. Applied and Environmental Microbiology, 2010, 76(17): 5718-5727. |
145 | WangL, RidgwayD, GuT, et al. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations[J]. Biotechnology Advances, 2005, 23(2): 115-129. |
146 | DriouchH, SommerB, WittmannC. Morphology engineering of Aspergillus niger for improved enzyme production[J]. Biotechnology and Bioengineering, 2010, 105(6): 1058. |
147 | SunX, SuX. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi[J]. World Journal of Microbiology and Biotechnology, 2019, 35(4): 54. |
148 | van den HomberghJ P T W, van de VondervoortP J I, Fraissinet-TachetL, et al. Aspergillus as a host for heterologous protein production: the problem of proteases[J]. Trends in Biotechnology, 1997, 15(7): 256-263. |
149 | 刘畅, 李军, 马腾, 等. 黑曲霉的紫外诱变及酸性蛋白酶缺陷株的选育[J]. 河北科技师范学院学报, 2012, 26(1): 72-76. |
LiuC, LiJ, MaT, et al. Mutagenesis and screening of mutant of Aspergillus niger deficient in acid protease[J]. Journal of Hebei Normal University of Science & Technology, 2012, 26(1): 72-76. | |
150 | 张玉梅, 李军, 国石磊, 等. 复合诱变选育酸性蛋白酶缺陷菌株[J]. 食品科技, 2014, 39(5): 15-19. |
ZhangY M, LiJ, GuoS L, et al. Screening of deficient acid protease producing strains with compound mutagenesis[J]. Food Science and Technology, 2014, 39(5): 15-19. | |
151 | 赵春田, 彭远义, 唐国敏, 等. 黑曲霉pepD基因阻断突变菌株的构建及功能分析[J]. 菌物学报, 2005, (3): 360-366. |
ZhaoC T, PengY Y, TangG M, et al. Construction of pepD gene disruption mutant in Aspergillus niger and its functional analysis[J]. Mycosystema, 2005, (3): 360-366. | |
152 | 孙晶, 李景鹏, 王敖全, 等. 黑曲霉pepB基因缺失菌株的构建及其功能分析[J]. 微生物学报, 2004, (6): 766-770. |
SunJ, LiJ P, WangA Q, et al. Construction and functional analysis of the pepB gene disruptant in Aspergillus niger[J]. Acta Microbiologica Sinica, 2004, (6): 766-770. | |
153 | PuntP J, SchurenF H J, LehmbeckJ, et al. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes[J]. Fungal Genetics and Biology, 2008, 45(12): 1591-1599. |
154 | 李丹丹. 基于CRISPR系统的丝状真菌基因组快速编辑[D]. 福州: 福州大学, 2017. |
LiD D. Fast genome editing of filamentous fungi based on CRISPR system[D]. Fuzhou: Fuzhou University, 2017. | |
155 | Martins-SantanaL, NoraL C, Sanches-MedeirosA, et al. Systems and synthetic biology approaches to engineer fungi for fine chemical production[J]. Frontiers in Bioengineering and Biotechnology, 2018, 6: 117. |
156 | KnufC, NielsenJ. Aspergilli: systems biology and industrial applications[J]. Biotechnology Journal, 2012, 7(9): 1115-1147. |
[1] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[6] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[7] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[8] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[9] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[10] | Xinzhe ZHANG, Wentao SUN, Bo LYU, Chun LI. Oxidative modification of plant natural products and microbial manufacturing [J]. CIESC Journal, 2022, 73(7): 2790-2805. |
[11] | Yinlong XU, Wenchieh CHENG, Lin WANG, Zhongfei XUE, Yixin XIE. Implication and enhancement mechanism of chitosan-assisted enzyme- induced carbonate precipitation for copper wastewater treatment [J]. CIESC Journal, 2022, 73(5): 2222-2232. |
[12] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
[13] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[14] | Haibo LIU, Nan WANG, Hongzhou LIU, Tiezhu CHEN, Jianchang LI. Effects of voltage perturbation on the activities of microorganisms and key enzymes in EAD metabolic flux [J]. CIESC Journal, 2022, 73(10): 4603-4612. |
[15] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||