CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 755-765.DOI: 10.11949/0438-1157.20190680
• Energy and environmental engineering • Previous Articles Next Articles
Hongyan WEN1,2(),Yuming ZHANG1,Dexin JI1,2,Guangyi ZHANG2()
Received:
2019-06-18
Revised:
2019-08-08
Online:
2020-02-05
Published:
2020-02-05
Contact:
Guangyi ZHANG
通讯作者:
张光义
作者简介:
温宏炎(1994—),男,硕士研究生,CLC Number:
Hongyan WEN, Yuming ZHANG, Dexin JI, Guangyi ZHANG. Co-combustion of oil sludge char and brown coal: characteristics and kinetics[J]. CIESC Journal, 2020, 71(2): 755-765.
温宏炎, 张玉明, 纪德馨, 张光义. 油泥焦与褐煤共燃特性及动力学[J]. 化工学报, 2020, 71(2): 755-765.
Add to citation manager EndNote|Ris|BibTeX
Sample | Proximate analysis/%(mass) | Ultimate analysis/%(mass) | HHVs/ (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Var | Mar | Aar | FCar① | Nd | Cd | Hd | Sd | Od① | ||
SC | 4.91 | 1.01 | 74.40 | 19.68 | 0.45 | 15.96 | 0.51 | 0.47 | 6.95 | 5.43 |
25BC75SC | 13.87 | 7.38 | 58.13 | 20.62 | 0.68 | 26.04 | 1.17 | 0.54 | 8.81 | 9.07 |
50BC50SC | 19.75 | 13.63 | 42.94 | 23.68 | 1.02 | 34.13 | 1.74 | 0.61 | 12.78 | 13.25 |
75BC25SC | 28.16 | 19.75 | 27.16 | 25.93 | 1.33 | 45.21 | 2.20 | 0.73 | 17.10 | 16.98 |
BC | 33.73 | 26.09 | 11.07 | 29.11 | 1.78 | 56.29 | 3.56 | 0.95 | 22.44 | 21.46 |
Table 1 Proximate and ultimate of various blended samples
Sample | Proximate analysis/%(mass) | Ultimate analysis/%(mass) | HHVs/ (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Var | Mar | Aar | FCar① | Nd | Cd | Hd | Sd | Od① | ||
SC | 4.91 | 1.01 | 74.40 | 19.68 | 0.45 | 15.96 | 0.51 | 0.47 | 6.95 | 5.43 |
25BC75SC | 13.87 | 7.38 | 58.13 | 20.62 | 0.68 | 26.04 | 1.17 | 0.54 | 8.81 | 9.07 |
50BC50SC | 19.75 | 13.63 | 42.94 | 23.68 | 1.02 | 34.13 | 1.74 | 0.61 | 12.78 | 13.25 |
75BC25SC | 28.16 | 19.75 | 27.16 | 25.93 | 1.33 | 45.21 | 2.20 | 0.73 | 17.10 | 16.98 |
BC | 33.73 | 26.09 | 11.07 | 29.11 | 1.78 | 56.29 | 3.56 | 0.95 | 22.44 | 21.46 |
Sample | Component content/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na2O | MgO | Al2O3 | SiO2 | SO3 | K2O | CaO | Fe2O3 | Others | |
SC | 2.45 | 3.06 | 15.50 | 57.31 | 3.93 | 2.59 | 7.53 | 5.89 | 1.74 |
BC | — | 3.94 | 8.56 | 12.63 | 31.65 | 0.54 | 34.46 | 6.52 | 1.70 |
Table 2 XRF analysis of oil sludge char ash and coal ash
Sample | Component content/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na2O | MgO | Al2O3 | SiO2 | SO3 | K2O | CaO | Fe2O3 | Others | |
SC | 2.45 | 3.06 | 15.50 | 57.31 | 3.93 | 2.59 | 7.53 | 5.89 | 1.74 |
BC | — | 3.94 | 8.56 | 12.63 | 31.65 | 0.54 | 34.46 | 6.52 | 1.70 |
Sample | β/(℃/min) | Ti/℃ | Tmax/℃ | Th/℃ | Kr×106/(min-1·℃-2) | Gb×106/(min-1·℃-2) | S×108/(min-2·℃-3) |
---|---|---|---|---|---|---|---|
SC | 10 | 426. | 497 | 713 | 6.43 | 5.51 | 0.22 |
20 | 441 | 515 | 727 | 12.03 | 10.34 | 0.73 | |
40 | 458 | 534 | 753 | 19.26 | 16.63 | 1.71 | |
25BC75SC | 10 | 308 | 412 | 675 | 20.45 | 15.29 | 1.48 |
20 | 333 | 447 | 694 | 31.02 | 23.11 | 4.07 | |
40 | 350 | 469 | 712 | 52.41 | 39.11 | 13.84 | |
50BC50SC | 10 | 284 | 378 | 654 | 40.92 | 30.74 | 4.26 |
20 | 291 | 380 | 672 | 71.21 | 52.56 | 14.31 | |
40 | 295 | 409 | 690 | 109.63 | 79.07 | 42.74 | |
75BC25SC | 10 | 279 | 372 | 614 | 67.70 | 50.78 | 9.81 |
20 | 289 | 385 | 632 | 96.38 | 72.35 | 27.00 | |
40 | 291 | 396 | 644 | 162.49 | 119.41 | 95.63 | |
BC | 10 | 306 | 397 | 613 | 64.41 | 49.63 | 11.64 |
20 | 316 | 427 | 621 | 87.82 | 64.99 | 29.56 | |
40 | 331 | 470 | 648 | 155.62 | 109.59 | 100.14 |
Table 3 Combustion characteristic parameters of various blended samples at different heating rates
Sample | β/(℃/min) | Ti/℃ | Tmax/℃ | Th/℃ | Kr×106/(min-1·℃-2) | Gb×106/(min-1·℃-2) | S×108/(min-2·℃-3) |
---|---|---|---|---|---|---|---|
SC | 10 | 426. | 497 | 713 | 6.43 | 5.51 | 0.22 |
20 | 441 | 515 | 727 | 12.03 | 10.34 | 0.73 | |
40 | 458 | 534 | 753 | 19.26 | 16.63 | 1.71 | |
25BC75SC | 10 | 308 | 412 | 675 | 20.45 | 15.29 | 1.48 |
20 | 333 | 447 | 694 | 31.02 | 23.11 | 4.07 | |
40 | 350 | 469 | 712 | 52.41 | 39.11 | 13.84 | |
50BC50SC | 10 | 284 | 378 | 654 | 40.92 | 30.74 | 4.26 |
20 | 291 | 380 | 672 | 71.21 | 52.56 | 14.31 | |
40 | 295 | 409 | 690 | 109.63 | 79.07 | 42.74 | |
75BC25SC | 10 | 279 | 372 | 614 | 67.70 | 50.78 | 9.81 |
20 | 289 | 385 | 632 | 96.38 | 72.35 | 27.00 | |
40 | 291 | 396 | 644 | 162.49 | 119.41 | 95.63 | |
BC | 10 | 306 | 397 | 613 | 64.41 | 49.63 | 11.64 |
20 | 316 | 427 | 621 | 87.82 | 64.99 | 29.56 | |
40 | 331 | 470 | 648 | 155.62 | 109.59 | 100.14 |
Sample | X | KAS | FWO | FR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E/(kJ/mol) | k0/min-1 | R2 | E/(kJ/mol) | k0/min-1 | R2 | E/(kJ/mol) | k0/min-1 | R2 | ||
SC | 0.1 | 152.7 | 1.71×107 | 0.796 | 156.3 | 3.79×1013 | 0.822 | 178.3 | 5.44×1011 | 0.899 |
0.2 | 208.7 | 8.12×1010 | 0.981 | 210.1 | 1.09×1017 | 0.983 | 234.9 | 2.57×1015 | 0.978 | |
0.3 | 197.2 | 7.52×109 | 0.998 | 199.5 | 1.19×1016 | 0.998 | 204.3 | 1.19×1013 | 0.986 | |
0.4 | 209.9 | 3.78×1010 | 1.000 | 211.9 | 5.54×1016 | 1.000 | 187.4 | 6.11×1011 | 0.983 | |
0.5 | 209.4 | 2.36×1010 | 0.999 | 211.7 | 3.62×1016 | 0.999 | 189.2 | 5.15×1011 | 0.979 | |
0.6 | 202.6 | 5.06×109 | 0.997 | 205.5 | 8.64×1015 | 0.997 | 153.3 | 1.48×109 | 0.981 | |
0.7 | 192.6 | 6.74×108 | 0.987 | 196.4 | 1.33×1015 | 0.988 | 161.1 | 3.05×109 | 0.966 | |
0.8 | 181.3 | 7.41×107 | 0.980 | 186.0 | 1.74×1014 | 0.982 | 154.3 | 6.66×108 | 0.950 | |
0.9 | 190.0 | 9.15×107 | 0.948 | 194.9 | 2.16×1014 | 0.955 | 169.3 | 1.63×109 | 0.850 | |
Ave | 193.8 | — | — | 196.9 | — | — | 181.3 | — | — | |
BC | 0.1 | 152.4 | 3.64×109 | 0.998 | 154.2 | 5.68×1015 | 0.998 | 138.2 | 7.93×1010 | 0.917 |
0.2 | 127.4 | 6.60×106 | 1.000 | 131.0 | 1.65×1013 | 1.000 | 114.5 | 2.52×108 | 0.920 | |
0.3 | 107.8 | 8.10×104 | 0.997 | 112.8 | 3.03×1011 | 0.998 | 81.2 | 3.40×105 | 0.949 | |
0.4 | 89.0 | 1.65×103 | 0.993 | 95.3 | 9.44×109 | 0.996 | 69.4 | 3.29×104 | 0.940 | |
0.5 | 76.8 | 1.40×102 | 0.980 | 84.0 | 1.12×109 | 0.986 | 62.8 | 9.29×103 | 0.939 | |
0.6 | 68.6 | 2.73×10 | 0.994 | 76.5 | 2.83×108 | 0.996 | 61.8 | 7.04×103 | 0.934 | |
0.7 | 62.5 | 8.34 | 0.991 | 71.0 | 1.08×108 | 0.990 | 69.8 | 2.35×104 | 0.965 | |
0.8 | 57.3 | 3.20 | 0.983 | 66.4 | 5.10×107 | 0.982 | 92.4 | 7.62×105 | 0.976 | |
0.9 | 61.0 | 5.98 | 0.904 | 70.3 | 9.01×107 | 0.932 | 117.3 | 3.26×107 | 0.969 | |
Ave | 89.2 | — | — | 95.7 | — | — | 89.7 | — | — |
Table 4 Kinetic parameters of oil sludge char and coal
Sample | X | KAS | FWO | FR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E/(kJ/mol) | k0/min-1 | R2 | E/(kJ/mol) | k0/min-1 | R2 | E/(kJ/mol) | k0/min-1 | R2 | ||
SC | 0.1 | 152.7 | 1.71×107 | 0.796 | 156.3 | 3.79×1013 | 0.822 | 178.3 | 5.44×1011 | 0.899 |
0.2 | 208.7 | 8.12×1010 | 0.981 | 210.1 | 1.09×1017 | 0.983 | 234.9 | 2.57×1015 | 0.978 | |
0.3 | 197.2 | 7.52×109 | 0.998 | 199.5 | 1.19×1016 | 0.998 | 204.3 | 1.19×1013 | 0.986 | |
0.4 | 209.9 | 3.78×1010 | 1.000 | 211.9 | 5.54×1016 | 1.000 | 187.4 | 6.11×1011 | 0.983 | |
0.5 | 209.4 | 2.36×1010 | 0.999 | 211.7 | 3.62×1016 | 0.999 | 189.2 | 5.15×1011 | 0.979 | |
0.6 | 202.6 | 5.06×109 | 0.997 | 205.5 | 8.64×1015 | 0.997 | 153.3 | 1.48×109 | 0.981 | |
0.7 | 192.6 | 6.74×108 | 0.987 | 196.4 | 1.33×1015 | 0.988 | 161.1 | 3.05×109 | 0.966 | |
0.8 | 181.3 | 7.41×107 | 0.980 | 186.0 | 1.74×1014 | 0.982 | 154.3 | 6.66×108 | 0.950 | |
0.9 | 190.0 | 9.15×107 | 0.948 | 194.9 | 2.16×1014 | 0.955 | 169.3 | 1.63×109 | 0.850 | |
Ave | 193.8 | — | — | 196.9 | — | — | 181.3 | — | — | |
BC | 0.1 | 152.4 | 3.64×109 | 0.998 | 154.2 | 5.68×1015 | 0.998 | 138.2 | 7.93×1010 | 0.917 |
0.2 | 127.4 | 6.60×106 | 1.000 | 131.0 | 1.65×1013 | 1.000 | 114.5 | 2.52×108 | 0.920 | |
0.3 | 107.8 | 8.10×104 | 0.997 | 112.8 | 3.03×1011 | 0.998 | 81.2 | 3.40×105 | 0.949 | |
0.4 | 89.0 | 1.65×103 | 0.993 | 95.3 | 9.44×109 | 0.996 | 69.4 | 3.29×104 | 0.940 | |
0.5 | 76.8 | 1.40×102 | 0.980 | 84.0 | 1.12×109 | 0.986 | 62.8 | 9.29×103 | 0.939 | |
0.6 | 68.6 | 2.73×10 | 0.994 | 76.5 | 2.83×108 | 0.996 | 61.8 | 7.04×103 | 0.934 | |
0.7 | 62.5 | 8.34 | 0.991 | 71.0 | 1.08×108 | 0.990 | 69.8 | 2.35×104 | 0.965 | |
0.8 | 57.3 | 3.20 | 0.983 | 66.4 | 5.10×107 | 0.982 | 92.4 | 7.62×105 | 0.976 | |
0.9 | 61.0 | 5.98 | 0.904 | 70.3 | 9.01×107 | 0.932 | 117.3 | 3.26×107 | 0.969 | |
Ave | 89.2 | — | — | 95.7 | — | — | 89.7 | — | — |
Stage | X | KAS | FWO | FR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E/(kJ/mol) | k0/min-1 | R2 | E/(kJ/mol) | k0/min-1 | R2 | E/(kJ/mol) | k0/min-1 | R2 | ||
volatile (exp) | 0.1 | 127.2 | 2.48×107 | 0.998 | 130.1 | 5.37×1013 | 0.998 | 125.5 | 7.59×109 | 0.882 |
0.2 | 122.4 | 3.11×106 | 0.997 | 126.1 | 8.24×1012 | 0.998 | 120.8 | 1.04×109 | 0.987 | |
0.3 | 120.6 | 1.17×106 | 0.992 | 124.9 | 3.46×1012 | 0.993 | 115.8 | 2.36×108 | 0.989 | |
0.4 | 113.5 | 2.05×105 | 0.993 | 118.5 | 7.25×1011 | 0.994 | 100.8 | 1.21×107 | 0.989 | |
0.5 | 106.3 | 4.16×104 | 0.994 | 111.9 | 1.76×1011 | 0.995 | 88.9 | 1.34×106 | 0.986 | |
0.6 | 97.6 | 7.37×103 | 0.991 | 103.9 | 3.80×1010 | 0.993 | 81.9 | 3.90×105 | 0.993 | |
0.7 | 92.8 | 2.80×103 | 0.995 | 99.5 | 1.65×1010 | 0.996 | 81.5 | 3.73×105 | 0.981 | |
0.8 | 90.7 | 1.82×103 | 0.998 | 97.8 | 1.17×1010 | 0.998 | 92.8 | 2.49×106 | 0.945 | |
0.9 | 96.2 | 4.51×103 | 0.990 | 103.3 | 2.71×1010 | 0.975 | 120.5 | 2.40×108 | 0.920 | |
Ave | 107.5 | — | — | 112.9 | — | — | 103.2 | — | — | |
fixed carbon (exp) | 0.1 | 135.4 | 6.05×104 | 0.962 | 141.0 | 2.04×1011 | 0.968 | 186.4 | 5.66×1011 | 0.915 |
0.2 | 151.7 | 1.23×106 | 0.941 | 156.6 | 3.42×1012 | 0.950 | 194.3 | 1.44×102 | 0.926 | |
0.3 | 163.4 | 8.80×106 | 0.930 | 168.0 | 2.17×1013 | 0.939 | 196.2 | 1.47×1012 | 0.936 | |
0.4 | 172.7 | 3.72×107 | 0.936 | 177.0 | 8.48×1013 | 0.945 | 196.2 | 1.13×1012 | 0.957 | |
0.5 | 181.4 | 1.29×108 | 0.938 | 185.4 | 2.75×1014 | 0.946 | 194.9 | 7.15×1011 | 0.954 | |
0.6 | 187.6 | 2.85×108 | 0.931 | 191.5 | 5.85×1014 | 0.940 | 191.8 | 3.45×1011 | 0.928 | |
0.7 | 185.3 | 1.67×108 | 0.929 | 189.5 | 3.62×1014 | 0.939 | 180.9 | 5.62×1010 | 0.937 | |
0.8 | 185.4 | 1.39×108 | 0.948 | 189.9 | 3.11×1014 | 0.955 | 180.2 | 4.02×1010 | 0.975 | |
0.9 | 179.1 | 4.17×107 | 0.967 | 184.2 | 1.05×1014 | 0.971 | 178.6 | 2.45×1010 | 0.971 | |
Ave | 171.3 | — | — | 175.9 | — | — | 188.8 | — | — | |
volatile (cal) | 0.1 | 204.6 | 4.37×1014 | 0.938 | 203.6 | 3.73×1020 | 0.943 | 193.6 | 1.35×1016 | 0.936 |
0.2 | 176.9 | 2.56×1011 | 0.950 | 177.9 | 3.27×1017 | 0.955 | 169.7 | 2.12×1013 | 0.956 | |
0.3 | 158.1 | 2.43×109 | 0.976 | 160.4 | 4.19×1015 | 0.979 | 138.4 | 2.41×1010 | 0.998 | |
0.4 | 135.7 | 1.96×107 | 0.999 | 139.4 | 4.79×1013 | 0.999 | 109.3 | 7.74×107 | 0.981 | |
0.5 | 119.1 | 6.24×105 | 0.997 | 123.9 | 2.06×1012 | 0.998 | 97.7 | 7.80×106 | 0.955 | |
0.6 | 108.7 | 7.16×104 | 0.991 | 114.3 | 2.94×1011 | 0.993 | 92.7 | 2.87×106 | 0.963 | |
0.7 | 101.6 | 1.68×104 | 0.985 | 107.8 | 8.16×1010 | 0.987 | 90.7 | 1.94×106 | 0.954 | |
0.8 | 97.2 | 6.75×103 | 0.976 | 103.8 | 3.72×1010 | 0.981 | 90.1 | 1.93×106 | 0.933 | |
0.9 | 94.5 | 4.17×103 | 0.965 | 101.5 | 2.52×1010 | 0.972 | 95.0 | 6.03×106 | 0.930 | |
Ave | 132.9 | — | — | 137.0 | — | — | 119.7 | — | — | |
fixed carbon (cal) | 0.1 | 120.1 | 8.21×103 | 0.999 | 126.2 | 3.35×1010 | 1.000 | 98.9 | 2.12×106 | 0.890 |
0.2 | 121.7 | 1.89×104 | 0.999 | 127.9 | 7.64×1010 | 0.999 | 104.7 | 5.04×106 | 0.910 | |
0.3 | 133.2 | 1.53×105 | 0.970 | 139.0 | 5.36×1011 | 0.975 | 113.8 | 1.97×107 | 0.993 | |
0.4 | 150.2 | 2.42×106 | 0.995 | 155.2 | 6.87×1012 | 0.996 | 132.1 | 2.87×108 | 0.990 | |
0.5 | 161.9 | 1.56×107 | 1.000 | 166.5 | 3.90×1013 | 1.000 | 148.8 | 3.29×109 | 0.997 | |
0.6 | 170.9 | 6.19×107 | 1.000 | 175.2 | 1.43×1014 | 1.000 | 158.7 | 1.34×1010 | 0.986 | |
0.7 | 210.6 | 2.29×1010 | 0.999 | 213.1 | 3.63×1016 | 0.999 | 217.1 | 5.91×1013 | 0.979 | |
0.8 | 240.5 | 1.78×1012 | 0.999 | 241.7 | 2.23×1018 | 0.999 | 386.9 | 1.79×1024 | 0.956 | |
0.9 | 262.4 | 3.97×1013 | 0.979 | 262.6 | 4.31×1019 | 0.982 | 509.5 | 4.58×1031 | 0.904 | |
Ave | 174.6 | — | — | 178.6 | — | — | 207.8 | — | — |
Table 5 Comparison of experimental and theoretic calculated value of 75BC25SC
Stage | X | KAS | FWO | FR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E/(kJ/mol) | k0/min-1 | R2 | E/(kJ/mol) | k0/min-1 | R2 | E/(kJ/mol) | k0/min-1 | R2 | ||
volatile (exp) | 0.1 | 127.2 | 2.48×107 | 0.998 | 130.1 | 5.37×1013 | 0.998 | 125.5 | 7.59×109 | 0.882 |
0.2 | 122.4 | 3.11×106 | 0.997 | 126.1 | 8.24×1012 | 0.998 | 120.8 | 1.04×109 | 0.987 | |
0.3 | 120.6 | 1.17×106 | 0.992 | 124.9 | 3.46×1012 | 0.993 | 115.8 | 2.36×108 | 0.989 | |
0.4 | 113.5 | 2.05×105 | 0.993 | 118.5 | 7.25×1011 | 0.994 | 100.8 | 1.21×107 | 0.989 | |
0.5 | 106.3 | 4.16×104 | 0.994 | 111.9 | 1.76×1011 | 0.995 | 88.9 | 1.34×106 | 0.986 | |
0.6 | 97.6 | 7.37×103 | 0.991 | 103.9 | 3.80×1010 | 0.993 | 81.9 | 3.90×105 | 0.993 | |
0.7 | 92.8 | 2.80×103 | 0.995 | 99.5 | 1.65×1010 | 0.996 | 81.5 | 3.73×105 | 0.981 | |
0.8 | 90.7 | 1.82×103 | 0.998 | 97.8 | 1.17×1010 | 0.998 | 92.8 | 2.49×106 | 0.945 | |
0.9 | 96.2 | 4.51×103 | 0.990 | 103.3 | 2.71×1010 | 0.975 | 120.5 | 2.40×108 | 0.920 | |
Ave | 107.5 | — | — | 112.9 | — | — | 103.2 | — | — | |
fixed carbon (exp) | 0.1 | 135.4 | 6.05×104 | 0.962 | 141.0 | 2.04×1011 | 0.968 | 186.4 | 5.66×1011 | 0.915 |
0.2 | 151.7 | 1.23×106 | 0.941 | 156.6 | 3.42×1012 | 0.950 | 194.3 | 1.44×102 | 0.926 | |
0.3 | 163.4 | 8.80×106 | 0.930 | 168.0 | 2.17×1013 | 0.939 | 196.2 | 1.47×1012 | 0.936 | |
0.4 | 172.7 | 3.72×107 | 0.936 | 177.0 | 8.48×1013 | 0.945 | 196.2 | 1.13×1012 | 0.957 | |
0.5 | 181.4 | 1.29×108 | 0.938 | 185.4 | 2.75×1014 | 0.946 | 194.9 | 7.15×1011 | 0.954 | |
0.6 | 187.6 | 2.85×108 | 0.931 | 191.5 | 5.85×1014 | 0.940 | 191.8 | 3.45×1011 | 0.928 | |
0.7 | 185.3 | 1.67×108 | 0.929 | 189.5 | 3.62×1014 | 0.939 | 180.9 | 5.62×1010 | 0.937 | |
0.8 | 185.4 | 1.39×108 | 0.948 | 189.9 | 3.11×1014 | 0.955 | 180.2 | 4.02×1010 | 0.975 | |
0.9 | 179.1 | 4.17×107 | 0.967 | 184.2 | 1.05×1014 | 0.971 | 178.6 | 2.45×1010 | 0.971 | |
Ave | 171.3 | — | — | 175.9 | — | — | 188.8 | — | — | |
volatile (cal) | 0.1 | 204.6 | 4.37×1014 | 0.938 | 203.6 | 3.73×1020 | 0.943 | 193.6 | 1.35×1016 | 0.936 |
0.2 | 176.9 | 2.56×1011 | 0.950 | 177.9 | 3.27×1017 | 0.955 | 169.7 | 2.12×1013 | 0.956 | |
0.3 | 158.1 | 2.43×109 | 0.976 | 160.4 | 4.19×1015 | 0.979 | 138.4 | 2.41×1010 | 0.998 | |
0.4 | 135.7 | 1.96×107 | 0.999 | 139.4 | 4.79×1013 | 0.999 | 109.3 | 7.74×107 | 0.981 | |
0.5 | 119.1 | 6.24×105 | 0.997 | 123.9 | 2.06×1012 | 0.998 | 97.7 | 7.80×106 | 0.955 | |
0.6 | 108.7 | 7.16×104 | 0.991 | 114.3 | 2.94×1011 | 0.993 | 92.7 | 2.87×106 | 0.963 | |
0.7 | 101.6 | 1.68×104 | 0.985 | 107.8 | 8.16×1010 | 0.987 | 90.7 | 1.94×106 | 0.954 | |
0.8 | 97.2 | 6.75×103 | 0.976 | 103.8 | 3.72×1010 | 0.981 | 90.1 | 1.93×106 | 0.933 | |
0.9 | 94.5 | 4.17×103 | 0.965 | 101.5 | 2.52×1010 | 0.972 | 95.0 | 6.03×106 | 0.930 | |
Ave | 132.9 | — | — | 137.0 | — | — | 119.7 | — | — | |
fixed carbon (cal) | 0.1 | 120.1 | 8.21×103 | 0.999 | 126.2 | 3.35×1010 | 1.000 | 98.9 | 2.12×106 | 0.890 |
0.2 | 121.7 | 1.89×104 | 0.999 | 127.9 | 7.64×1010 | 0.999 | 104.7 | 5.04×106 | 0.910 | |
0.3 | 133.2 | 1.53×105 | 0.970 | 139.0 | 5.36×1011 | 0.975 | 113.8 | 1.97×107 | 0.993 | |
0.4 | 150.2 | 2.42×106 | 0.995 | 155.2 | 6.87×1012 | 0.996 | 132.1 | 2.87×108 | 0.990 | |
0.5 | 161.9 | 1.56×107 | 1.000 | 166.5 | 3.90×1013 | 1.000 | 148.8 | 3.29×109 | 0.997 | |
0.6 | 170.9 | 6.19×107 | 1.000 | 175.2 | 1.43×1014 | 1.000 | 158.7 | 1.34×1010 | 0.986 | |
0.7 | 210.6 | 2.29×1010 | 0.999 | 213.1 | 3.63×1016 | 0.999 | 217.1 | 5.91×1013 | 0.979 | |
0.8 | 240.5 | 1.78×1012 | 0.999 | 241.7 | 2.23×1018 | 0.999 | 386.9 | 1.79×1024 | 0.956 | |
0.9 | 262.4 | 3.97×1013 | 0.979 | 262.6 | 4.31×1019 | 0.982 | 509.5 | 4.58×1031 | 0.904 | |
Ave | 174.6 | — | — | 178.6 | — | — | 207.8 | — | — |
1 | Shen L, Zhang D K. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed [J]. Fuel, 2003, 82(4): 465-472. |
2 | Gong Z Q, Du A, Wang Z B, et al. Experimental study on pyrolysis characteristics of oil sludge with a tube furnace reactor [J]. Energy & Fuels, 2017, 31(8): 8102-8108. |
3 | Du Y, Jiang X, Lv G, et al. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis[J]. Energy Conversion and Management, 2014, 88: 459-463. |
4 | Sahu S G, Sarkar P, Chakraborty N, et al. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars[J]. Fuel Processing Technology, 2010, 91(3): 369-378. |
5 | Yang J L, Chen H X, Zhao W T, et al. Combustion kinetics and emission characteristics of peat by using TG-FTIR technique[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(1): 519-528. |
6 | Xu T, Ning X J, Wang G W, et al. Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal[J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(12): 1412-1422. |
7 | Tong W, Liu Q C, Ran G J, et al. Experiment and expectation: co-combustion behavior of anthracite and biomass char[J]. Bioresource Technology, 2019, 280(5): 421-420. |
8 | Sarkar P, Sahu S G, Mukherjee A, et al. Co-combustion studies for potential application of sawdust or its low temperature char as co-fuel with coal[J]. Applied Thermal Engineering, 2014, 63(3): 616-623. |
9 | 张锦萍, 王长安, 贾晓威, 等. 半焦-烟煤混燃特性及动力学分析[J]. 化工学报, 2018, 69(8): 3611-3618. |
Zhang J P, Wang C A, Jia X W, et al. Co-combustion characteristics and kinetic analysis of semi-coke and bituminous coal[J]. CIESC Journal, 2018, 69(8): 3611-3618. | |
10 | Gong Z Q, Wang Z T, Wang Z B, et al. Study on the migration characteristics of nitrogen and sulfur during co-combustion of oil sludge char and microalgae residue[J]. Fuel, 2019, 238(15): 1-9. |
11 | Javier P, Carlos H, Carmen B, et al. Investigation on co-firing of coal mine waste residues in pulverized coal combustion systems[J]. Energy, 2017, 140: 58-68. |
12 | Ke M L, Wen J L, Wei H C, et al. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends[J]. Applied Energy, 2013, 105: 57-65. |
13 | Van D B, Anderson S L. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3 [J].Energy & Fuels, 2006, 20: 1886-1894. |
14 | Chen Y, Mori S, Pan W. Studying the mechanism of ignition of coal particles by TG-DTA[J]. Thermochimica Acta, 1996, 275: 149-158. |
15 | Wang G, Zhang J, Chang W, et al. Structural features and gasification reactivity of biomass chars pyrolyzed in different atmospheres at high temperature[J]. Energy, 2018, 147: 25-35. |
16 | 白刚, 周西华, 宋东平, 等.不同变质程度煤燃烧特性及动力学参数研究[J].中国安全科学学报, 2017, 27(9): 63-68. |
Bai G, Zhou X H, Song D P, et al. Research on coal’s combustion characteristics and kinetics parameters as a function of its metamorphic degree[J]. China Safety Science Journal, 2017, 27(9): 63-68. | |
17 | Folgueras M B, Díaz R M, Xiberta J, et al. Thermogravimetric analysis of the co-combustion of coal and sewage sludge[J]. Fuel, 2003, 82(15/16/17): 2051-2055. |
18 | Wang H Y, Zhang J L, Wang G W, et al. Characteristics and kinetic analysis of co-combustion of brown coal and anthracite[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(2): 447-454. |
19 | Colomba D B. Combustion and gasification rates of lignocellulosic chars[J]. Progress in Energy and Combustion Science, 2009, 35 (2): 121-140. |
20 | Huang L, Liu J, He Y, et al. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel[J]. Bioresource Technology, 2016, 218: 631-642. |
21 | Mathieu M, Sébastien P, Enrica M, et al. Kinetic study and modelling of char combustion in TGA in isothermal conditions[J]. Fuel, 2017, 203: 522-536. |
22 | 王擎, 王海刚, 孙佰仲, 等. 油页岩及其半焦混烧特性的热重试验研究和动力学分析[J]. 化工学报, 2007, 58(11): 2882-2888. |
Wang Q, Wang H G, Sun B Z, et al. Thermo-gravimetric study and kinetic analysis of blended combustion characteristics of oil shale and semi-coke[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(11): 2882-2888. | |
23 | Xu F F, Wang B, Yang D, et al. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: pyrolysis behaviors and kinetic analysis[J]. Energy Conversion and Management, 2018, 171(1): 1106-1115. |
24 | Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data [J]. Nature, 1964, 201: 68-69. |
25 | Doyle C D. Estimating isothermal life from thermogravimetric data [J]. Journal of Applied Polymer Science, 1962, 6: 639-642. |
26 | Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957, 29: 1702-1706. |
27 | Joseph H F, Leo A W. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Polymer Letters, 1966, 4: 323-328. |
28 | Miura K. A new and simple method to estimate f(E) and k0(E) in the distributed activation-energy model from three sets of experimental-data[J]. Energy & Fuels, 1995, 9(2): 302-307. |
29 | Friedman H L. New methods for evaluating kinetic parameters from thermal analysis data[J]. Polymer Letters, 1969, 7: 41-46. |
30 | Andrés A C. Anka B, Nico Z,et al. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme[J]. Fuel, 2014, 123: 230-240. |
31 | Janković B, Mentus S, Jelić D. A kinetic study of nonisothermal decomposition process of anhydrous nickel nitrate under air atmosphere[J]. Physica B Condensed Matter, 2009, 404(16): 2263-2269. |
32 | Cai J, Wu W, Liu R, et al. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2014, 36: 236-246. |
33 | 郑瑛, 池保华, 王保文, 等. 几种等转化率法在动力学研究中的应用与比较[J]. 煤炭转化, 2006, 29(4): 34-37. |
Zheng Y, Chi B H, Wang B W, et al. Application and comp arison of equal conversion rate methods in the decomposition kinetics research[J]. Coal Conversion, 2006, 29(4): 34-37. | |
34 | 孙庆雷, 李文, 陈皓侃, 等. DEAM和Coats-Redfern积分法研究煤半焦燃烧动力学的比较[J]. 化工学报, 2003, 54(11): 1598-1602. |
Sun Q L, Li W, Chen H K, et al. Comparison between DAEM and Coats-Redfern method for combustion kinetics of coal char[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(11): 1598-1602. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[7] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[8] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[9] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[10] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[11] | Zhen LONG, Jinhang WANG, Yong HE, Deqing LIANG. Characteristics study on hydrates formation from gas mixture under ionic liquid together with kinetic hydrate inhibitors [J]. CIESC Journal, 2023, 74(4): 1703-1711. |
[12] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[13] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[14] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[15] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||