CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 788-798.DOI: 10.11949/0438-1157.20190832
• Energy and environmental engineering • Previous Articles Next Articles
Xiaoling ZHANG1,2(),Fengqin YU3,Lin HUANGFU2,Chao WANG3,Changming LI2,Shiqiu GAO2,Jian YU2()
Received:
2019-07-22
Revised:
2019-10-05
Online:
2020-02-05
Published:
2020-02-05
Contact:
Jian YU
张霄玲1,2(),于凤芹3,皇甫林2,王超3,李长明2,高士秋2,余剑2()
通讯作者:
余剑
作者简介:
张霄玲(1995—),女,硕士研究生, 基金资助:
CLC Number:
Xiaoling ZHANG, Fengqin YU, Lin HUANGFU, Chao WANG, Changming LI, Shiqiu GAO, Jian YU. Utilization of Fe-Zn-based waste desulfurizer to produce Fe-C materials for removing COD from waste water[J]. CIESC Journal, 2020, 71(2): 788-798.
张霄玲, 于凤芹, 皇甫林, 王超, 李长明, 高士秋, 余剑. Fe-Zn基废脱硫剂制备铁碳材料及其对废水微电解性能[J]. 化工学报, 2020, 71(2): 788-798.
Add to citation manager EndNote|Ris|BibTeX
Proximate analysis/%(mass) | Ultimate analysis/%(mass) | ||||||
---|---|---|---|---|---|---|---|
Ash | Volatile | Fixed carbon | C | H | O | N | S |
19.56 | 29.46 | 50.98 | 62.38 | 3.68 | 12.46 | 1.09 | 1.02 |
Table 1 Proximate and ultimate analysis of Buliangou coal
Proximate analysis/%(mass) | Ultimate analysis/%(mass) | ||||||
---|---|---|---|---|---|---|---|
Ash | Volatile | Fixed carbon | C | H | O | N | S |
19.56 | 29.46 | 50.98 | 62.38 | 3.68 | 12.46 | 1.09 | 1.02 |
Sample | Main elements/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
O | Fe | Zn | Al | Ti | Si | Na | Ca | S | Cl | 其他 | ||
waste desulfurizer | 36.11 | 21.69 | 10.75 | 0.105 | 0.156 | 0.770 | 2.570 | 2.860 | 13.48 | 9.980 | 1.529 | |
W-C900-3 | 34.37 | 25.77 | 14.48 | 0.145 | 0.210 | 1.160 | 2.675 | 3.170 | 10.01 | 6.830 | 1.180 | |
WC-C900-3 | 41.51 | 18.09 | 8.015 | 4.274 | 0.468 | 3.064 | 1.204 | 3.492 | 14.15 | 3.798 | 1.935 | |
WCN-C900-3 | 36.31 | 9.950 | 0.060 | 4.350 | 0.290 | 3.280 | 29.88 | 2.620 | 8.160 | 4.120 | 0.980 | |
Fe-C material | 36.23 | 28.77 | 0.232 | 5.342 | 0.752 | 7.698 | 1.770 | 6.464 | 0.804 | 0.372 | 11.56 | |
commercial Fe-C | 36.61 | 44.11 | 0.046 | 3.823 | 0.251 | 9.515 | 0.275 | 2.678 | 0.918 | 0.043 | 1.728 | |
C-C900-3 | 47.87 | 1.450 | 0.063 | 21.83 | 2.250 | 13.41 | 0.270 | 6.510 | 0.866 | 0.160 | 5.318 |
Table 2 Main chemical composition of waste desulfurizer and samples through different thermal processes
Sample | Main elements/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
O | Fe | Zn | Al | Ti | Si | Na | Ca | S | Cl | 其他 | ||
waste desulfurizer | 36.11 | 21.69 | 10.75 | 0.105 | 0.156 | 0.770 | 2.570 | 2.860 | 13.48 | 9.980 | 1.529 | |
W-C900-3 | 34.37 | 25.77 | 14.48 | 0.145 | 0.210 | 1.160 | 2.675 | 3.170 | 10.01 | 6.830 | 1.180 | |
WC-C900-3 | 41.51 | 18.09 | 8.015 | 4.274 | 0.468 | 3.064 | 1.204 | 3.492 | 14.15 | 3.798 | 1.935 | |
WCN-C900-3 | 36.31 | 9.950 | 0.060 | 4.350 | 0.290 | 3.280 | 29.88 | 2.620 | 8.160 | 4.120 | 0.980 | |
Fe-C material | 36.23 | 28.77 | 0.232 | 5.342 | 0.752 | 7.698 | 1.770 | 6.464 | 0.804 | 0.372 | 11.56 | |
commercial Fe-C | 36.61 | 44.11 | 0.046 | 3.823 | 0.251 | 9.515 | 0.275 | 2.678 | 0.918 | 0.043 | 1.728 | |
C-C900-3 | 47.87 | 1.450 | 0.063 | 21.83 | 2.250 | 13.41 | 0.270 | 6.510 | 0.866 | 0.160 | 5.318 |
Sample | SBET/ (m 2/g) | Pore volume/(cm 3/g) | Pore size/nm | |
---|---|---|---|---|
Vtotal | Vmeso | |||
waste desulfurizer | 75.08 | 0.068 | 0.092 | 9.446 |
W-C900-3 | 12.38 | 0.012 | 0 | 3.915 |
WC-C900-3 | 84.97 | 0.108 | 0.009 | 16.39 |
WCN-C900-3 Fe-C material | 84.36 193.6 | 0.102 0.186 | 0.008 0.028 | 15.34 8.281 |
commercial Fe-C | 9.371 | 0.006 | 0.001 | 10.17 |
Table 3 Specific surface area and pore size distribution of different samples
Sample | SBET/ (m 2/g) | Pore volume/(cm 3/g) | Pore size/nm | |
---|---|---|---|---|
Vtotal | Vmeso | |||
waste desulfurizer | 75.08 | 0.068 | 0.092 | 9.446 |
W-C900-3 | 12.38 | 0.012 | 0 | 3.915 |
WC-C900-3 | 84.97 | 0.108 | 0.009 | 16.39 |
WCN-C900-3 Fe-C material | 84.36 193.6 | 0.102 0.186 | 0.008 0.028 | 15.34 8.281 |
commercial Fe-C | 9.371 | 0.006 | 0.001 | 10.17 |
Original pH | pH(Fe-C 1.5 h) | Fe 2+concentration/ (mg/L) | COD removal rate/% |
---|---|---|---|
1.5 | 1.83 | 471.2 | 82.68 |
2.0 | 2.57 | 204.6 | 72.15 |
2.5 | 4.00 | 85.74 | 59.56 |
3.0 | 5.42 | 27.89 | 39.69 |
5.0 | 6.30 | 0.2659 | 15.36 |
6.5 | 7.80 | 0.008412 | 14.56 |
Table 4 Effect of original pH on removal rate of COD via micro-electrolysis-Fenton in waste water
Original pH | pH(Fe-C 1.5 h) | Fe 2+concentration/ (mg/L) | COD removal rate/% |
---|---|---|---|
1.5 | 1.83 | 471.2 | 82.68 |
2.0 | 2.57 | 204.6 | 72.15 |
2.5 | 4.00 | 85.74 | 59.56 |
3.0 | 5.42 | 27.89 | 39.69 |
5.0 | 6.30 | 0.2659 | 15.36 |
6.5 | 7.80 | 0.008412 | 14.56 |
1 | 白静怡, 凌开成. 处理废脱硫剂的可行性研究[J]. 煤炭转化, 2002, 25( 3): 17- 20. |
Bai J Y, Ling K C. Feasibility study on disposal of waste desulfurizer [J]. Coal Conversion, 2002, 25( 3): 17- 20. | |
2 | Wang M M, Li T, Li H Y, et al. Desulfurization of hot coal gas over regenerable low-cost Fe 2O 3/mesoporous Al 2O 3 prepared by the sol gel method [J]. Energy & Fuels, 2017, 31( 12): 13921- 13932. |
3 | Lin C F, Qin W, Dong C Q. H 2S adsorption and decomposition on the gradually reduced alpha-Fe 2O 3(001) surface: a DFT study [J]. Applied Surface Science, 2016, 387: 720- 731. |
4 | 刘焕群. 氧化锌脱硫剂的回收利用[J]. 中国资源综合利用, 2001, ( 9): 12- 15. |
Liu H Q. Recovery and utilization of zinc oxide desulfurizer[J]. Comprehensive Utilization of Chinese Resources, 2001, ( 9): 12- 15. | |
5 | 马孟臣, 刘自民, 饶磊, 等. 烧结处理焦炉煤气废脱硫剂的研究与应用[J]. 烧结球团, 2017, 42( 1): 54- 57. |
Ma M C, Liu Z M, Rao L, et al. Study and application on the treatment of waste desulfurization for coke oven gas by sintering[J]. Sintering and Pelletizing, 2017, 42( 1): 54- 57. | |
6 | Ma J R, Liu Z Y, Liu S J, et al. A regenerable Fe/AC desulfurizer for SO 2 adsorption at low temperatures [J]. Applied Catalysis B-Environmental, 2003, 45( 4): 301- 309. |
7 | 陈燕彬. 国内外锌冶炼技术的现状及发展动向[J]. 世界有色金属, 2018, ( 15): 5- 6. |
Chen Y B. Present situation and development trend of zinc smelting technology at home and abroad[J]. Metallurgical Smelting, 2018, ( 15): 5- 6. | |
8 | 田秋月, 李聚. 常温氧化铁废脱硫剂回收处理方法的可行性研究[J]. 公用科技, 1995, ( 4): 14- 17. |
Tian Q Y, Li J. Feasibility study on utilization of waste iron oxide desulfurizer at room temperature[J]. Public Science and Technology, 1995, ( 4): 14- 17. | |
9 | 丁明雷, 刘建周, 段利叶, 等. 中温氧化锌脱硫剂再生及其织构研究[J]. 天然气化工(C1化学与化工), 2013, 38( 5): 67- 70. |
Ding M L, Liu J Z, Duan L Y, et al. Study on regeneration and texture of a mid-temperature zinc oxide desulfurizer[J]. Natural Gas Chemical Industy(C1 Chemistry and Chemical Engineering), 2013, 38( 5): 67- 70. | |
10 | 杨文刚. 废脱硫剂高温焙烧制酸技术的应用[J]. 燃料与化工, 2005, ( 1): 33. |
Yang W G. Application of high temperature roasting of waste desulfurizer to produce acid[J]. Fuel and Chemical Processes, 2005, ( 1): 33. | |
11 | 秦亚平. 用氮肥厂的废氧化锌脱硫剂生产七水硫酸锌[J]. 化工环保, 1997, ( 5): 31- 34. |
Qing Y P. Production of ZnSO 4•7H 2O from spent ZnO desulfurizer in nitrogen fertilizer plant [J]. Chemical Industry and Environmental Protection, 1997, ( 5): 31- 34. | |
12 | Guo Z Q, Pan J, Zhang F. Green and efficient utilization of waste ferric-oxide desulfurizer to clean waste copper slag by the smelting reduction-sulfurizing process[J]. Journal of Cleaner Production, 2018, 199: 891- 899. |
13 | Liang M S, Kang W K, Xie K C. Comparison of reduction behavior of Fe 2O 3, ZnO and ZnFe 2O 4 by TPR technique [J]. Journal of Natural Gas Chemistry, 2009, 18( 1): 110- 113. |
14 | 蒋洪静, 郭满囤. 我国表面活性剂LAS废水的处理技术进展[J]. 山西化工, 2008, 28( 1): 28- 31+51. |
Jiang H J, Guo M T. Development of treatment technology on LAS wastewater[J]. Shanxi Chemical Industry, 2008, 28( 1): 28- 31+51. | |
15 | 周丹, 张涛, 呼世斌. 水性油墨废水的活性炭吸附特性研究[J]. 环境科学与技术, 2007, ( 3): 85- 86. |
Zhou D, Zhang T, Hu S B. Adsorbing properties of activated carbon for treating water-based ink-manufacturing wastewater [J]. Environmental Science and Technology, 2007, ( 3): 85- 86. | |
16 | 冷彩凤, 王崟, 任龙飞. 光催化氧化法处理胶印油墨废水的研究[J]. 包装工程, 2016, 37( 23): 181- 185. |
Leng C F, Wang Y, Ren L F. Treatment of offset printing ink wastewater by photocatalytic oxidation process[J]. Packing Engineering, 2016, 37( 23): 181- 185. | |
17 | Wu B T, He C H, Yuan S J, et al. Hydrogen enrichment as a bioaugmentation tool to alleviate ammonia inhibition on anaerobic digestion of phenol-containing wastewater[J]. Bioresource Technology, 2019, 276: 97- 102. |
18 | 唐文伟, 曾新平, 胡中华. 芬顿试剂和湿式过氧化氢氧化法处理乳化液废水研究[J]. 环境科学学报, 2006, 26( 8): 1265- 1270. |
Tang W W, Zeng X P, Hu Z H. Study of Fenton’s reagent and wet hydrogen peroxide oxidation for treatment of emulsified wastewater[ J]. Acta Scientiae Circumstantiae, 2006, 26( 8): 1265- 1270. | |
19 | Liu W W, Tu X Y, Wang X P, et al. Pretreatment of coking wastewater by acid out, micro-electrolysis process with in situelectrochemical peroxidation reaction [J]. Chemical Engineering Journal, 2012, 200( 202): 720- 728. |
20 | 华松林, 何淦锋, 何明, 等. 线路板废水处理工艺的探讨[J]. 工业安全与环保, 2002, 28( 8): 15- 16. |
Hua S L, He G F, He M, et al. An approach to the wastewater treatment process of circuit board production[J]. Industrial Safety and Environmental Protection, 2002, 28( 8): 15- 16. | |
21 | Chao H, Fen P, Hai J G, et al. Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment: long-term study and scale up[J]. Chemical Engineering Journal, 2018, 351: 697- 707. |
22 | 宋忠忠, 李杰, 孙静. 铁碳微电解填料的研究及应用现状[J]. 绿色科技, 2017, ( 6): 48- 50+55. |
Song Z Z, Li J, Sun J. Research and application of iron carbon micro electrolysis filler[J]. Journal of Green Science and Technology, 2017, ( 6): 48- 50+55. | |
23 | Liu G D, Liu K, Zhang H T. Study of desulfurization with magnesite desulfurized under hot metal pretreatment[J]. Metalurgija, 2018, 57( 1/2): 35- 38. |
24 | Abramowitz H, Rao Y K. Direct reduction of zinc-sulfide by carbon and lime[J]. Mineral Processing and Extractive Metallurgy, 1978, 87: 180- 188. |
25 | 时永辉, 苏建文, 陈建华, 等. 微电解-Fenton 深度处理制药废水影响因素与参数控制[J]. 环境工程学报, 2014, 8( 3): 1106- 1112. |
Shi Y H, Su J W, Chen J H, et al. Influencing factors and parameters control on advanced treatment of pharmaceutical wastewater by micro-electrolysis-Fenton process[J]. Chinese Journal of Environmental Engineering, 2014, 8( 3): 1106- 1112. | |
26 | 仇雅丽, 李长明, 王德亮, 等. 赤泥/煤基铁炭材料的制备及其脱除废水Cr(Ⅵ)的性能[J]. 化工学报, 2018, 69( 7): 3216- 3225. |
Qiu Y L, Li C M, Wang D L, et al. Preparation of red mud/coal based material and its performance to remove Cr(Ⅵ) in waste water[J]. CIESC Journal, 2018, 69( 7): 3216- 3225. | |
27 | Yesiltepe S, Bugdayci M, Yucel O, et al. Recycling of alkaline batteries via a carbothermal reduction process [J]. Batteries, 2019, 5( 1): 35. |
28 | Liu W, Han J W, Qin W Q, et al. Reduction roasting of high iron bearing zinc calcine for recovery of zinc and iron[J]. Canadian Metallurgical Quarterly, 2014, 53( 2): 176- 182. |
29 | Holloway P C, Etsell T H, Murland A L. Roasting of La Oroya zinc ferrite with Na 2CO 3 [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2007, 38( 5): 781- 791. |
30 | 高爱舫, 吴财松, 高鹏, 等. Fenton 试剂氧化处理油墨废水的条件优化[J]. 湖北农业科学, 2012, 51( 18): 3999- 4013. |
Gao A F, Wu C S, Gao P, et al. Optimization of treatment condition of printing-ink wastewater by Fenton’s reagent[J]. Hubei Agricultural Sciences, 2012, 51( 18): 3999- 4013. | |
31 | 沈欣军, 邹成龙, 孙美芳. 铁碳微电解技术处理实际印染废水[J]. 沈阳工业大学学报, 2018, 40( 4): 397- 401. |
Shen X J, Zou C L, Sun M F. Treatment of actual dyeing wastewater with iron-carbon micro-electrolysis technology[J]. Journal of Shenyang University of Technology, 2018, 40( 4): 397- 401. | |
32 | 许杰, 董岁明, 柴丽红, 等. 新型铁炭微电解材料的制备研究[J]. 应用化工, 2016, 45( 8): 1482- 1484+1487. |
Xu J, Dong S M, Chai L H, et al. Preparation research of micro-electrolysis material[J]. Applied Chemical Industry, 2016, 45( 8): 1482- 1484+1487. |
[1] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[2] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[3] | Xuejin GAO, Tengfei LIU, Zidong XU, Huihui GAO, Yongchuan YU. Intermittent process fault monitoring based on recurrent autoencoder [J]. CIESC Journal, 2020, 71(7): 3172-3179. |
[4] | Enwei ZHI, Fei YAN, Mifeng REN, Gaowei YAN. Soft sensor of wet ball mill load parameters based on transfer variational autoencoder - label mapping [J]. CIESC Journal, 2019, 70(S1): 150-157. |
[5] | Bao ZHU, Junfei QIAO. Features extracted from auto-encoder based echo state network and its applications to process modeling [J]. CIESC Journal, 2019, 70(12): 4770-4776. |
[6] | SHI Fangyi, WANG Ziyang, LIANG Jun. Fault classification based on semi-supervised dense ladder network [J]. CIESC Journal, 2018, 69(7): 3083-3091. |
[7] | CHEN Nana, WANG Jinshi, LI Yong, XIA Kai, YAN Junjie. Characteristics of Marangoni dynamic condensation modes for water-ethanol mixture vapors on horizontal surface [J]. CIESC Journal, 2016, 67(9): 3574-3582. |
[8] | YAO Chuang, LIU Hui, LUO Xiaodong, YUE Jianxiong, LI Shiyao, CHEN Dazhi. Mechanism and microbial community analysis of anaerobic acid production (VFAs) by low carbon sludge in South China at alkaline condition [J]. CIESC Journal, 2016, 67(4): 1565-1571. |
[9] | LI Zhicong, GU Xingsheng. Improved biogeography-based optimization algorithm used in solving hybrid flow shop scheduling problem [J]. CIESC Journal, 2016, 67(3): 751-757. |
[10] | XU Yan, ZHANG Chunxia, WANG Ruxian, LÜ Jing, ZHAO Yujun, MA Xinbin. A code matrix-based method for distillation sequences synthesis [J]. CIESC Journal, 2015, 66(7): 2547-2554. |
[11] | WANG Fan, YANG Yawei, TAN Shuai, SHI Hongbo. Fault detection method based on sparse non-negative matrix factorization [J]. CIESC Journal, 2015, 66(5): 1798-1805. |
[12] | WANG Cong, WANG Shuying, ZHANG Miao, PENG Yongzhen, ZENG Wei. Analysis of COD, N and P in denitrifying phosphorus removal under multivariate condition [J]. CIESC Journal, 2015, 66(4): 1467-1475. |
[13] | CHANG Sheng, LI Jianzheng, FU Qing, ZHAO Xingru, ZHENG Guochen. Performance of fermentative hydrogen production and microbial community in ACR at different influent COD concentrations [J]. CIESC Journal, 2015, 66(3): 1156-1162. |
[14] | CHANG Sheng, LIU Feng. Comparison of impact of influent substrate concentration on fermentative hydrogen production by ethanol-type and butyric-type fermentation [J]. CIESC Journal, 2015, 66(12): 5111-5118. |
[15] | YIN Zhixuan, XIE Li, WANG Rui, ZHOU Qi. Effects of nitrite on integrated process of denitrification with anaerobic acidogenesis [J]. CIESC Journal, 2014, 65(9): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||