CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 3985-3993.DOI: 10.11949/j.issn.0438-1157.20190570
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Chenxi CAO(),Tianyuan CHEN,Xiaoxu DING,Hai HUANG,Jing XU(),Yifan HAN
Received:
2019-05-27
Revised:
2019-06-26
Online:
2019-10-05
Published:
2019-10-05
Contact:
Jing XU
通讯作者:
徐晶
作者简介:
曹晨熙(1989—),男,讲师,基金资助:
CLC Number:
Chenxi CAO, Tianyuan CHEN, Xiaoxu DING, Hai HUANG, Jing XU, Yifan HAN. Kinetics study on supported indium-based catalysts in carbon dioxide hydrogenation[J]. CIESC Journal, 2019, 70(10): 3985-3993.
曹晨熙, 陈天元, 丁晓旭, 黄海, 徐晶, 韩一帆. 负载型铟基催化剂二氧化碳加氢动力学研究[J]. 化工学报, 2019, 70(10): 3985-3993.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20190570
Catalysts | Conversion/ % | Selectivity/% | |
---|---|---|---|
MeOH | CO | ||
In1/TiO2 | 10.3 | 5.4 | 94.6 |
In1/ZrO2 | 3.0 | 57.3 | 42.7 |
In1/HfO2 | 2.0 | 72.0 | 27.0 |
In1/Y2O3 | 0.17 | 40.2 | 59.7 |
In1/Al2O3 | 0.90 | 33.0 | 67.0 |
In1/Nb2O5 | 0.13 | 31.5 | 68.5 |
In1/CeO2 | NA | NA | NA |
In1/MgO | NA | NA | NA |
In1/ZnO | NA | NA | NA |
In1/SiO2 | NA | NA | NA |
Table 1 Performance of supported indium-based catalysts with different supports
Catalysts | Conversion/ % | Selectivity/% | |
---|---|---|---|
MeOH | CO | ||
In1/TiO2 | 10.3 | 5.4 | 94.6 |
In1/ZrO2 | 3.0 | 57.3 | 42.7 |
In1/HfO2 | 2.0 | 72.0 | 27.0 |
In1/Y2O3 | 0.17 | 40.2 | 59.7 |
In1/Al2O3 | 0.90 | 33.0 | 67.0 |
In1/Nb2O5 | 0.13 | 31.5 | 68.5 |
In1/CeO2 | NA | NA | NA |
In1/MgO | NA | NA | NA |
In1/ZnO | NA | NA | NA |
In1/SiO2 | NA | NA | NA |
1 | McfarlanA. Techno-economic assessment of pathways for electricity generation in northern remote communities in Canada using methanol and dimethyl ether to replace diesel[J]. Renew. Sust. Energ. Rev., 2018, 90: 863-876. |
2 | 杨盼盼, 孙琦, 张玉龙, 等. 甲醇合成中CO2作用的研究进展[J]. 化工进展, 2018, 37(S1): 94-101. |
YangP P, SunQ, ZhangY L, et al. Research progress of the role of CO2 in methanol synthesis[J]. Chem. Ind. Eng. Prog., 2018, 37(S1): 94-101. | |
3 | IpatieffV, MonroeG. Synthesis of methanol from carbon dioxide and hydrogen over copper-alumina catalysts. Mechanism of reaction[J]. J. Am. Chem. Soc., 1945, 67(12): 2168-2171. |
4 | JooO S, JungK D, JungY S. CAMERE process for methanol synthesis from CO2 hydrogenation[J]. Stud. Surf. Sci. Catal., 2004, 153: 67-72. |
5 | 李庆勋, 王宗宝, 娄舒洁, 等. 二氧化碳加氢制甲醇研究进展[J]. 现代化工, 2019, (5): 19-23. |
LiQ X, WangZ B, LouS J, et al. Research progress in methanol production from carbon dioxide hydrogenation[J]. Modern Chemical Industry, 2019, (5): 19-23. | |
6 | BaoJ, YangG H, YoneyamaY, et al. Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions[J]. ACS Catal., 2019, 9(4): 3026-3053. |
7 | KattelS, LiuP, ChenJ G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface[J]. J. Am. Chem. Soc., 2017, 139(29): 9739-9754. |
8 | ArenaF, MezzatestaG, ZafaranaG, et al. Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation[J]. J. Catal., 2013, 300: 141-151. |
9 | AngeloL, KoblK, TejadaL M M, et al. Study of CuZnMOx oxides (M=Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol[J]. C. R. Chim., 2015, 18(3): 250-260. |
10 | ZhanH J, LiF, XinC L, et al. Performance of the La-Mn-Zn-Cu-O based perovskite precursors for methanol synthesis from CO2 hydrogenation[J]. Catal. Lett., 2015, 145(5): 1177-1185. |
11 | WuJ, SaitoM, TakeuchiM, et al. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich Feed[J]. Appl. Catal. A Gen., 2001, 218(1): 235-240. |
12 | QuJ, ZhouX, XuF, et al. Shape effect of Pd-promoted Ga2O3 nanocatalysts for methanol synthesis by CO2 hydrogenation[J]. J.Phys. Chem. C, 2014, 118(42): 24452-24466. |
13 | JiangX, KoizumiN, GuoX, et al. Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol[J]. Appl. Catal. B Environ., 2015, 170/171: 173-185. |
14 | WangJ, LiG, LiZ, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci. Adv., 2017, 3(10): e1701290. |
15 | MartinO, MartN A J, MondelliC, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew. Chem. Int. Ed., 2016, 55(21): 6261-6265. |
16 | SunK, FanZ, YeJ, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. J. CO2 Util., 2015, 12: 1-6. |
17 | GaoP, LiS, BuX, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat. Chem., 2017, 9: 1019-1024. |
18 | GaoP, DangS, LiS, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal., 2018, 8(1): 571-578. |
19 | SuJ, WangD, WangY, et al. Direct conversion of syngas into light olefins over zirconium-doped indium(Ⅲ) oxide and SAPO-34 bifunctional catalysts: design of oxide component and construction of reaction network[J]. ChemCatChem, 2018, 10(7): 1536-1541. |
20 | ZhangM, DouM, YuY. DFT study of CO2 conversion on InZr3(110) surface[J]. PCCP, 2017, 19(42): 28917-28927. |
21 | ZhangM, DouM, YuY. Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation[J]. Appl. Surf. Sci., 2018, 433(Suppl. C): 780-789. |
22 | YeJ, LiuC, GeQ. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J]. J. Phys. Chem. C, 2012, 116(14): 7817-7825. |
23 | YeJ, LiuC, MeiD, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study[J]. ACS Catal., 2013, 3(6): 1296-1306. |
24 | GervasiniA, Perdigon-MelonJ A, GuimonC, et al. An in-depth study of supported In2O3 catalysts for the selective catalytic reduction of NOx: the influence of the oxide support[J]. J. Phys. Chem. B, 2006, 110(1): 240-249. |
25 | ChenM, XuJ, CaoY, et al. Dehydrogenation of propane over In2O3-Al2O3 mixed oxide in the presence of carbon dioxide[J]. J. Catal., 2010, 272(1): 101-108. |
26 | MikhaylovR V, NikitinK V, GlazkovaN I, et al. Temperature-programmed desorption of CO2, formed by CO photooxidation on TiO2 surface[J]. J. Photoch. Photobio. A, 2018, 360: 255-261. |
27 | RotzingerF P, Kesselman-TruttmannJ M, HugS J, et al. Structure and vibrational spectrum of formate and acetate adsorbed from aqueous solution onto the TiO2 rutile (110) surface[J]. J. Phys. Chem. B, 2004, 108(16): 5004-5017. |
28 | CoronadoJ M, KataokaS, Tejedor-TejedorI, et al. Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO2: simultaneous FTIR analysis of gas and surface species[J]. J. Catal., 2003, 219(1): 219-230. |
29 | LarmierK, LiaoW C, TadaS, et al. CO2 to methanol hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal–support interface[J]. Angew. Chem. Int. Ed., 2017, 56(9): 2318-2323. |
30 | KattelS, YanB H, YangY X, et al. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J]. J. Am. Chem. Soc., 2016, 138(38): 12440-12450. |
31 | FisherI A, BellA T. In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2[J]. J. Catal., 1997, 172(1): 222-237. |
32 | FisherI A, WooH C, BellA T. Effects of zirconia promotion on the activity of Cu/SiO2 for methanol synthesis from CO/H2 and CO2/H2[J]. Catal. Lett., 1997, 44(1): 11-17. |
33 | OuyangF, KondoJ N, MaruyaK I, et al. Site conversion of methoxy species on ZrO2[J]. J. Phys. Chem. B, 1997, 101(25): 4867-4869. |
34 | PaulinoP N, SalimV M M, ResendeN S. Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light[J]. Appl. Catal. B Environ., 2016, 185: 362-370. |
35 | KimS S, LeeH H, HongS C. The Effect of the morphological characteristics of TiO2 supports on the reverse water-gas shift reaction over Pt/TiO2 catalysts[J]. Appl. Catal. B Environ., 2012, 119/120: 100-108. |
36 | ChenX, SuX, DuanH, et al. Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: controlled product selectivity and a mechanism study[J]. Catal. Today, 2017, 281: 312-318. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[11] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[12] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[13] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[14] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[15] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||