CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 275-286.DOI: 10.11949/0438-1157.20190441
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Liping WEI1(),Guodong JIANG2,Yukuan GU1,Haipeng TENG1
Received:
2019-04-26
Revised:
2019-05-24
Online:
2019-09-06
Published:
2019-09-06
Contact:
Liping WEI
通讯作者:
魏利平
作者简介:
魏利平(1987—),男,博士,讲师,基金资助:
CLC Number:
Liping WEI,Guodong JIANG,Yukuan GU,Haipeng TENG. Evaluation and application of pyrolysis kinetic model of Wucaiwan coal and Tulufan coal[J]. CIESC Journal, 2019, 70(S2): 275-286.
魏利平,江国栋,古玉宽,滕海鹏. 五彩湾煤和吐鲁番煤热解动力学模型评估与应用[J]. 化工学报, 2019, 70(S2): 275-286.
Add to citation manager EndNote|Ris|BibTeX
Coal type | Proximate analysis/% | Ultimate analysis/% | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | |
WCW | 9.97 | 3.67 | 27.86 | 58.5 | 78.94 | 3.78 | 16.26 | 0.54 | 0.48 |
TLF | 5.25 | 11.80 | 40.69 | 42.26 | 78.79 | 5.81 | 13.01 | 2.02 | 0.37 |
Table 1 Proximate and ultimate analyses of raw coals
Coal type | Proximate analysis/% | Ultimate analysis/% | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | |
WCW | 9.97 | 3.67 | 27.86 | 58.5 | 78.94 | 3.78 | 16.26 | 0.54 | 0.48 |
TLF | 5.25 | 11.80 | 40.69 | 42.26 | 78.79 | 5.81 | 13.01 | 2.02 | 0.37 |
Coal | |||||
---|---|---|---|---|---|
WCW | 10 | 527.27 | 722.94 | 0.78 | 38.49 |
20 | 542.15 | 736.09 | 1.47 | 37.57 | |
30 | 543.20 | 742.95 | 2.10 | 38.01 | |
50 | 546.86 | 777.05 | 3.74 | 35.98 | |
TLF | 10 | 457.18 | 714.67 | 3.48 | 41.49 |
20 | 473.42 | 730.73 | 6.61 | 46.65 | |
30 | 499.54 | 734.35 | 10.01 | 45.58 | |
50 | 518.65 | 747.02 | 17.73 | 45.52 |
Table 2 Pyrolysis characteristic values of two coal samples
Coal | |||||
---|---|---|---|---|---|
WCW | 10 | 527.27 | 722.94 | 0.78 | 38.49 |
20 | 542.15 | 736.09 | 1.47 | 37.57 | |
30 | 543.20 | 742.95 | 2.10 | 38.01 | |
50 | 546.86 | 777.05 | 3.74 | 35.98 | |
TLF | 10 | 457.18 | 714.67 | 3.48 | 41.49 |
20 | 473.42 | 730.73 | 6.61 | 46.65 | |
30 | 499.54 | 734.35 | 10.01 | 45.58 | |
50 | 518.65 | 747.02 | 17.73 | 45.52 |
Coal | T/K | Method | |||
---|---|---|---|---|---|
WCW | 543—560 | C-R | 297.0 | 0.87 | |
Doyle | 291.1 | 0.88 | |||
A-B-S-W | 14.4 | 0.99 | |||
560—740 | C-R | 55.0 | 0.99 | ||
Doyle | 62.5 | 142.49 | 0.99 | ||
A-B-S-W | 48.1 | 3.78 | 0.98 | ||
>740 | C-R | 22.3 | 0.99 | ||
Doyle | 37.0 | 3.13 | 0.99 | ||
A-B-S-W | 30.5 | 0.13 | 0.76 | ||
TLF | 473—500 | C-R | 168.1 | 0.78 | |
Doyle | 148.5 | 0.77 | |||
A-B-S-W | 13.3 | 0.99 | |||
560—746 | C-R | 53.4 | 0.95 | ||
Doyle | 60.6 | 108.81 | 0.96 | ||
A-B-S-W | 66.55 | 1271.17 | 0.90 | ||
>746 | C-R | 9.4 | 0.92 | ||
Doyle | 23.95 | 1.21 | 0.99 | ||
A-B-S-W | 18.81 | 0.25 | 0.35 |
Coal | T/K | Method | |||
---|---|---|---|---|---|
WCW | 543—560 | C-R | 297.0 | 0.87 | |
Doyle | 291.1 | 0.88 | |||
A-B-S-W | 14.4 | 0.99 | |||
560—740 | C-R | 55.0 | 0.99 | ||
Doyle | 62.5 | 142.49 | 0.99 | ||
A-B-S-W | 48.1 | 3.78 | 0.98 | ||
>740 | C-R | 22.3 | 0.99 | ||
Doyle | 37.0 | 3.13 | 0.99 | ||
A-B-S-W | 30.5 | 0.13 | 0.76 | ||
TLF | 473—500 | C-R | 168.1 | 0.78 | |
Doyle | 148.5 | 0.77 | |||
A-B-S-W | 13.3 | 0.99 | |||
560—746 | C-R | 53.4 | 0.95 | ||
Doyle | 60.6 | 108.81 | 0.96 | ||
A-B-S-W | 66.55 | 1271.17 | 0.90 | ||
>746 | C-R | 9.4 | 0.92 | ||
Doyle | 23.95 | 1.21 | 0.99 | ||
A-B-S-W | 18.81 | 0.25 | 0.35 |
Coal | n | OF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WCW | 279.06 | 9.90 | 348.08 | 74.43 | 355.20 | 52.77 | 0.200 | 0.334 | 3.820 | 0.0005 |
TLF | 176.13 | 118.51 | 208.05 | 3.62 | 233.95 | 35.65 | 0.265 | 0.365 | 2.336 | 0.0008 |
Table 4 Kinetic parameters of 3-DAEM for pyrolysis of coal samples at heating rate of 20?K/min
Coal | n | OF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WCW | 279.06 | 9.90 | 348.08 | 74.43 | 355.20 | 52.77 | 0.200 | 0.334 | 3.820 | 0.0005 |
TLF | 176.13 | 118.51 | 208.05 | 3.62 | 233.95 | 35.65 | 0.265 | 0.365 | 2.336 | 0.0008 |
1 | JinH, FanC, WeiW, et al. Evolution of pore structure and produced gases of Zhundong coal particle during gasification in supercritical water[J]. The Journal of Supercritical Fluids, 2018, (136): 102-109. |
2 | WiserW H, HillG R, KertamusN J. Kinetic study of pyrolysis of high volatile bituminous coal[J]. Industrial & Engineering Chemistry Research, 1967, 6(1): 133-138. |
3 | ArenillasA, PevidaC, RubieraF. Comparison between the reactivity of coal and synthetic coal models[J]. Fuel, 2003, 82(15): 2001-2006. |
4 | LuY K, ChangL P, XieK C. Effects of coal structure on its pyrolysis characteristics under N2 and Ar atmosphere[J]. Energy Sources, 2001, 23(8): 717-725. |
5 | 赵岩, 刘栗, 邱朋华, 等. 准东煤热解动力学单一扫描速率法应用局限性[J]. 哈尔滨工业大学学报, 2016, 48(7): 58-66. |
ZhaoY, LiuL, QiuP H, alet .Application limitations of single scanning rate method in pyrolysis kinetics of Zhundong coal[J]. Journal of Harbin Institute of Technology, 2016, 48(7): 58-66. | |
6 | OpfermannJ R, KaisersbergerE, FlammersheimH J. Model-free analysis of thermoanalytical data-advantages and limitations[J]. Thermochimica Acta, 2002, 391(1/2): 119-127. |
7 | PittG J. The kinetics of the evolution of volatile products from coal[J]. Fuel, 1962, (41): 267-274. |
8 | WangJ, LiP, LiangL. Kinetics modeling of low-rank coal pyrolysis based on a three-Gaussian distributed activation energy model (DAEM) reaction model[J]. Energy & Fuels, 2016, 30(11): 9693-9702. |
9 | CaprariisB D, FilippisP D, HerceC. Double-Gaussian distributed activation energy model for coal devolatilization[J]. Energy & Fuels, 2012, 26(10): 6153-6159. |
0 | SerioM A, HamblenD G, MarkhamJ R. Kinetics of volatile product evolution in coal pyrolysis: experiment and theory[J]. Energy & Fuels, 1987, 1(2): 138-152. |
11 | MustafaG, SeminG. A study on thermal decomposition kinetics of some turkish coals[J]. Energy Sources, 2005, 27(8): 749-759. |
12 | JiangG D, WeiL P. Analysis of pyrolysis kinetic model for processing of thermogravimetric analysis data[M]// Phase Change Materials and Their Applications. London: IntechOpen, 2018: 143-163. |
13 | JiangG D, WeiL P. Depolymerization model for flash pyrolysis of zhundong coal: competition and coordination reaction mechanisms between the bridge scission and condensation[J]. Thermochimica Acta, 2019, (675): 44-54. |
14 | BurnhamA, DinhL. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions[J]. Journal of Thermal Analysis & Calorimetry, 2007, 89(2): 479-490. |
15 | SharpJ H, WentworthS A. Kinetic analysis of thermogravimetric data[J]. Analytical Chemistry, 1969, 41(14): 2060-2062. |
16 | CoatsA W, RedfernJ P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, (201): 68-69. |
17 | VyazovkinS, WightC A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochimica Acta, 1999, 340/341: 53-68. |
18 | FriedmanH L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C Polymer Symposia, 1964, 6(1): 183-195. |
19 | LiuH. Combustion of coal chars in O2/CO2 and O2/N2 mixtures: a comparative study with non-isothermal thermogravimetric analyzer (TGA) tests[J]. Energy & Fuels, 2009, 23(9): 4278-4285. |
20 | KissingerH E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 2002, 29(11): 1702-1706. |
21 | 江国栋, 魏利平, 滕海鹏, 等. 基于热重法的准东煤等转化率热解动力学模型[J]. 化工学报, 2017, 68: 1417-1422. |
JiangG D, WeiL P, TengH P, et al. A kinetic model based on TGA data for pyrolysis of Zhundong coal[J]. CIESC Journal, 2017, 68: 1417-1422. | |
22 | CaiJ, WuW, LiuR. Sensitivity analysis of three-parallel-DAEM-reaction modelfor describing rice straw pyrolysis[J]. Bioresour. Technol., 2013, 132: 423. |
23 | CaiJ, LiuR. New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass[J]. Bioresour. Technol., 2008, 99(8): 2795-2799. |
24 | RiceA M. An introduction to radiotherapy[J]. Nursing Standard, 1997, 12(3): 49. |
25 | 韩峰, 蒙爱红, 鲁伟, 等. 沙尔湖褐煤和红沙泉不粘煤的热解动力学及热解产物分布[J]. 清华大学学报 (自然科学版), 2013, 53(3): 348-352. |
HanF, MengA H, LuW, et al. Pyrolysis kinetics and product distribution of two coals[J]. Journal of Tsinghua University(Science and Technology), 2013, 53(3): 348- 352. | |
26 | ArenillasA, RubieraF, PevidaC, et al. A comparison of different methods for predicting coal devolatilisation kinetics[J]. Journal of Analytical & Applied Pyrolysis, 2001, 58/59(2): 685-701. |
27 | JainA A, MehraA, RanadeV V. Processing of TGA data: analysis of isoconversional and model fitting methods[J]. Fuel, 2016, 165: 490-498. |
28 | VyazovkinS. Modification of the integral isoconversional method to account for variation in the activation energy[J]. Journal of Computational Chemistry, 2001, 22(2): 178-183. |
29 | FioriL, ValbusaM, LorenziD, et al. Modeling of the devolatilization kinetics during pyrolysis of grape residues[J]. Bioresour. Technol., 2012, 103: 389. |
30 | 王俊宏, 常丽萍, 谢克昌. 西部煤的热解特性及动力学研究 [J].煤炭转化, 2009, 32(3): 1-5. |
WangJ H, ChangL P, XieK C. Study on the pyrolysis andkinetics of coal of western China[J]. Coal Conversion, 2009, 32(3): 1-5. | |
31 | YanJ C, JiaoH R, LiZ K, et al. Kinetic analysis and modeling of coal pyrolysis with model-free methods [J]. Fuel, 2019, 241: 382-391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||