CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4872-4880.DOI: 10.11949/0438-1157.20190299
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Tao WANG(),Jun WANG,Diyu ZHAO,Yujian LIU,Ruigang HOU()
Received:
2019-04-10
Revised:
2019-09-18
Online:
2019-12-05
Published:
2019-12-05
Contact:
Ruigang HOU
通讯作者:
侯锐钢
作者简介:
王涛(1995—),男,硕士,基金资助:
CLC Number:
Tao WANG, Jun WANG, Diyu ZHAO, Yujian LIU, Ruigang HOU. Life prediction of glass fiber reinforced plastics based on BP neural network under corrosion condition[J]. CIESC Journal, 2019, 70(12): 4872-4880.
王涛, 王俊, 赵迪宇, 刘育建, 侯锐钢. 基于BP神经网络的玻璃纤维增强塑料腐蚀条件下的寿命预测[J]. 化工学报, 2019, 70(12): 4872-4880.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 Variation curves of flexural strength retention rate of composites with time and temperature under different acid concentration corrosion conditions
No. | Time/d | Temperature/℃ | Acid concentration | Predictive | Actual/% | Normalization | Relative error/% |
---|---|---|---|---|---|---|---|
1 | 0 | 25 | 2 | 1.0852 | 100.00 | 1.0000 | 8.5200 |
2 | 1 | 25 | 2 | 0.9979 | 98.05 | 0.9701 | 2.8633 |
3 | 3 | 25 | 2 | 1.0185 | 95.76 | 0.9352 | 8.9111 |
4 | 7 | 25 | 2 | 0.8758 | 90.60 | 0.8563 | 2.2706 |
5 | 14 | 25 | 2 | 0.8830 | 89.80 | 0.8441 | 4.6071 |
6 | 21 | 25 | 2 | 0.9103 | 90.31 | 0.8520 | 6.8467 |
7 | 90 | 25 | 2 | 0.8744 | 86.33 | 0.7911 | 10.5340 |
8 | 180 | 25 | 2 | 0.6320 | 85.73 | 0.7820 | -19.1824 |
9 | 360 | 25 | 2 | 0.7403 | 85.30 | 0.7753 | -4.5143 |
10 | 0 | 55 | 2 | 0.9764 | 100.00 | 1.0000 | -2.3610 |
11 | 1 | 55 | 2 | 0.9353 | 97.86 | 0.9673 | -3.3083 |
12 | 3 | 55 | 2 | 0.9257 | 95.32 | 0.9285 | -0.2992 |
13 | 7 | 55 | 2 | 0.8226 | 88.94 | 0.8309 | -1.0029 |
14 | 14 | 55 | 2 | 0.8050 | 85.97 | 0.7856 | 2.4751 |
15 | 21 | 55 | 2 | 0.7986 | 84.28 | 0.7597 | 5.1188 |
16 | 60 | 55 | 2 | 0.6584 | 73.83 | 0.6001 | 9.7206 |
17 | 90 | 55 | 2 | 0.7251 | 71.10 | 0.5584 | 29.8466 |
18 | 180 | 55 | 2 | 0.5093 | 68.44 | 0.5177 | -1.6097 |
19 | 360 | 55 | 2 | 0.3993 | 61.96 | 0.4187 | -4.6440 |
20 | 0 | 80 | 2 | 0.9611 | 100.00 | 1.0000 | -3.8889 |
21 | 1 | 80 | 2 | 0.5951 | 84.41 | 0.7618 | -21.879 |
22 | 3 | 80 | 2 | 0.6647 | 78.24 | 0.6674 | -0.4162 |
23 | 7 | 80 | 2 | 0.5673 | 72.23 | 0.5756 | -1.4477 |
24 | 14 | 80 | 2 | 0.4948 | 68.21 | 0.5142 | -3.7814 |
25 | 21 | 80 | 2 | 0.4491 | 66.49 | 0.4880 | -7.9697 |
26 | 30 | 80 | 2 | 0.5171 | 64.58 | 0.4588 | 12.7147 |
27 | 60 | 80 | 2 | 0.4637 | 59.45 | 0.3804 | 8.5200 |
28 | 90 | 80 | 2 | 0.3371 | 55.53 | 0.3205 | 2.8633 |
29 | 180 | 80 | 2 | 0.2072 | 47.87 | 0.2033 | 8.9111 |
30 | 360 | 80 | 2 | 0.0386 | 40.91 | 0.0970 | 2.2706 |
Table 1 Prediction results and measured values of neural networks under low concentration acid corrosion
No. | Time/d | Temperature/℃ | Acid concentration | Predictive | Actual/% | Normalization | Relative error/% |
---|---|---|---|---|---|---|---|
1 | 0 | 25 | 2 | 1.0852 | 100.00 | 1.0000 | 8.5200 |
2 | 1 | 25 | 2 | 0.9979 | 98.05 | 0.9701 | 2.8633 |
3 | 3 | 25 | 2 | 1.0185 | 95.76 | 0.9352 | 8.9111 |
4 | 7 | 25 | 2 | 0.8758 | 90.60 | 0.8563 | 2.2706 |
5 | 14 | 25 | 2 | 0.8830 | 89.80 | 0.8441 | 4.6071 |
6 | 21 | 25 | 2 | 0.9103 | 90.31 | 0.8520 | 6.8467 |
7 | 90 | 25 | 2 | 0.8744 | 86.33 | 0.7911 | 10.5340 |
8 | 180 | 25 | 2 | 0.6320 | 85.73 | 0.7820 | -19.1824 |
9 | 360 | 25 | 2 | 0.7403 | 85.30 | 0.7753 | -4.5143 |
10 | 0 | 55 | 2 | 0.9764 | 100.00 | 1.0000 | -2.3610 |
11 | 1 | 55 | 2 | 0.9353 | 97.86 | 0.9673 | -3.3083 |
12 | 3 | 55 | 2 | 0.9257 | 95.32 | 0.9285 | -0.2992 |
13 | 7 | 55 | 2 | 0.8226 | 88.94 | 0.8309 | -1.0029 |
14 | 14 | 55 | 2 | 0.8050 | 85.97 | 0.7856 | 2.4751 |
15 | 21 | 55 | 2 | 0.7986 | 84.28 | 0.7597 | 5.1188 |
16 | 60 | 55 | 2 | 0.6584 | 73.83 | 0.6001 | 9.7206 |
17 | 90 | 55 | 2 | 0.7251 | 71.10 | 0.5584 | 29.8466 |
18 | 180 | 55 | 2 | 0.5093 | 68.44 | 0.5177 | -1.6097 |
19 | 360 | 55 | 2 | 0.3993 | 61.96 | 0.4187 | -4.6440 |
20 | 0 | 80 | 2 | 0.9611 | 100.00 | 1.0000 | -3.8889 |
21 | 1 | 80 | 2 | 0.5951 | 84.41 | 0.7618 | -21.879 |
22 | 3 | 80 | 2 | 0.6647 | 78.24 | 0.6674 | -0.4162 |
23 | 7 | 80 | 2 | 0.5673 | 72.23 | 0.5756 | -1.4477 |
24 | 14 | 80 | 2 | 0.4948 | 68.21 | 0.5142 | -3.7814 |
25 | 21 | 80 | 2 | 0.4491 | 66.49 | 0.4880 | -7.9697 |
26 | 30 | 80 | 2 | 0.5171 | 64.58 | 0.4588 | 12.7147 |
27 | 60 | 80 | 2 | 0.4637 | 59.45 | 0.3804 | 8.5200 |
28 | 90 | 80 | 2 | 0.3371 | 55.53 | 0.3205 | 2.8633 |
29 | 180 | 80 | 2 | 0.2072 | 47.87 | 0.2033 | 8.9111 |
30 | 360 | 80 | 2 | 0.0386 | 40.91 | 0.0970 | 2.2706 |
No. | Time/d | Temperature/℃ | Acid concentration/( | Predictive | Actual/% | Normalization | Relative error/% |
---|---|---|---|---|---|---|---|
1 | 0 | 25 | 7 | 1.0952 | 100.00 | 1.0000 | 9.5200 |
2 | 1 | 25 | 7 | 0.9116 | 92.40 | 0.8839 | 3.1428 |
3 | 3 | 25 | 7 | 0.9183 | 89.20 | 0.8350 | 9.9804 |
4 | 7 | 25 | 7 | 0.8498 | 88.90 | 0.8304 | 2.3416 |
5 | 14 | 25 | 7 | 0.8030 | 84.56 | 0.7641 | 5.0897 |
6 | 21 | 25 | 7 | 0.7970 | 82.90 | 0.7387 | 7.8969 |
7 | 30 | 25 | 7 | 0.7632 | 79.05 | 0.6799 | 12.2574 |
8 | 90 | 25 | 7 | 0.6997 | 70.53 | 0.5497 | 27.2883 |
9 | 180 | 25 | 7 | 0.4409 | 65.70 | 0.4759 | -7.3552 |
10 | 360 | 25 | 7 | 0.3636 | 59.90 | 0.3872 | -6.0972 |
11 | 0 | 55 | 7 | 0.9680 | 100.00 | 1.0000 | -3.2000 |
12 | 1 | 55 | 7 | 0.8495 | 90.33 | 0.8523 | -0.3259 |
13 | 3 | 55 | 7 | 0.8342 | 89.70 | 0.8426 | -0.9890 |
14 | 7 | 55 | 7 | 0.6828 | 80.51 | 0.7022 | -2.7690 |
15 | 14 | 55 | 7 | 0.5506 | 73.14 | 0.5895 | -6.5970 |
16 | 21 | 55 | 7 | 0.5210 | 72.47 | 0.5793 | -10.070 |
17 | 60 | 55 | 7 | 0.2904 | 64.47 | 0.4571 | -36.461 |
18 | 90 | 55 | 7 | 0.4428 | 64.08 | 0.4511 | -1.8474 |
19 | 180 | 55 | 7 | 0.3361 | 55.28 | 0.3167 | 6.1404 |
20 | 360 | 55 | 7 | 0.2794 | 50.30 | 0.2405 | 16.1678 |
21 | 0 | 80 | 7 | 1.1667 | 100.00 | 1.0000 | 16.6667 |
22 | 1 | 80 | 7 | 0.7461 | 83.20 | 0.7433 | 0.3737 |
23 | 3 | 80 | 7 | 0.7081 | 80.35 | 0.6997 | 1.1909 |
24 | 7 | 80 | 7 | 0.6623 | 76.63 | 0.6429 | 3.0246 |
25 | 14 | 80 | 7 | 0.4315 | 65.34 | 0.4704 | -8.2681 |
26 | 21 | 80 | 7 | 0.4051 | 64.89 | 0.4635 | -12.586 |
27 | 30 | 80 | 7 | 0.3395 | 62.23 | 0.4228 | -19.708 |
28 | 60 | 80 | 7 | 0.3006 | 55.32 | 0.3172 | -5.2538 |
29 | 180 | 80 | 7 | 0.0759 | 39.78 | 0.0798 | -4.8751 |
30 | 360 | 80 | 7 | -0.0583 | 34.56 | 0 | — |
Table 2 Prediction results and measured values of neural networks under the condition of high concentration acid corrosion
No. | Time/d | Temperature/℃ | Acid concentration/( | Predictive | Actual/% | Normalization | Relative error/% |
---|---|---|---|---|---|---|---|
1 | 0 | 25 | 7 | 1.0952 | 100.00 | 1.0000 | 9.5200 |
2 | 1 | 25 | 7 | 0.9116 | 92.40 | 0.8839 | 3.1428 |
3 | 3 | 25 | 7 | 0.9183 | 89.20 | 0.8350 | 9.9804 |
4 | 7 | 25 | 7 | 0.8498 | 88.90 | 0.8304 | 2.3416 |
5 | 14 | 25 | 7 | 0.8030 | 84.56 | 0.7641 | 5.0897 |
6 | 21 | 25 | 7 | 0.7970 | 82.90 | 0.7387 | 7.8969 |
7 | 30 | 25 | 7 | 0.7632 | 79.05 | 0.6799 | 12.2574 |
8 | 90 | 25 | 7 | 0.6997 | 70.53 | 0.5497 | 27.2883 |
9 | 180 | 25 | 7 | 0.4409 | 65.70 | 0.4759 | -7.3552 |
10 | 360 | 25 | 7 | 0.3636 | 59.90 | 0.3872 | -6.0972 |
11 | 0 | 55 | 7 | 0.9680 | 100.00 | 1.0000 | -3.2000 |
12 | 1 | 55 | 7 | 0.8495 | 90.33 | 0.8523 | -0.3259 |
13 | 3 | 55 | 7 | 0.8342 | 89.70 | 0.8426 | -0.9890 |
14 | 7 | 55 | 7 | 0.6828 | 80.51 | 0.7022 | -2.7690 |
15 | 14 | 55 | 7 | 0.5506 | 73.14 | 0.5895 | -6.5970 |
16 | 21 | 55 | 7 | 0.5210 | 72.47 | 0.5793 | -10.070 |
17 | 60 | 55 | 7 | 0.2904 | 64.47 | 0.4571 | -36.461 |
18 | 90 | 55 | 7 | 0.4428 | 64.08 | 0.4511 | -1.8474 |
19 | 180 | 55 | 7 | 0.3361 | 55.28 | 0.3167 | 6.1404 |
20 | 360 | 55 | 7 | 0.2794 | 50.30 | 0.2405 | 16.1678 |
21 | 0 | 80 | 7 | 1.1667 | 100.00 | 1.0000 | 16.6667 |
22 | 1 | 80 | 7 | 0.7461 | 83.20 | 0.7433 | 0.3737 |
23 | 3 | 80 | 7 | 0.7081 | 80.35 | 0.6997 | 1.1909 |
24 | 7 | 80 | 7 | 0.6623 | 76.63 | 0.6429 | 3.0246 |
25 | 14 | 80 | 7 | 0.4315 | 65.34 | 0.4704 | -8.2681 |
26 | 21 | 80 | 7 | 0.4051 | 64.89 | 0.4635 | -12.586 |
27 | 30 | 80 | 7 | 0.3395 | 62.23 | 0.4228 | -19.708 |
28 | 60 | 80 | 7 | 0.3006 | 55.32 | 0.3172 | -5.2538 |
29 | 180 | 80 | 7 | 0.0759 | 39.78 | 0.0798 | -4.8751 |
30 | 360 | 80 | 7 | -0.0583 | 34.56 | 0 | — |
Test | Time/d | Temperature/℃ | Acid concentration/( | Predictive/% | Actual/% | Relative error/% |
---|---|---|---|---|---|---|
1 | 30 | 25 | 2 | 92.32 | 90.26 | 2.28 |
2 | 30 | 55 | 2 | 75.39 | 80.33 | -6.15 |
3 | 90 | 80 | 2 | 60.32 | 55.53 | 8.63 |
4 | 60 | 25 | 7 | 73.23 | 77.43 | -5.42 |
5 | 30 | 55 | 7 | 70.31 | 70.97 | -0.93 |
6 | 90 | 80 | 7 | 38.36 | 45.54 | -15.77 |
Table 3 Prediction results and measured values of neural networks for test data
Test | Time/d | Temperature/℃ | Acid concentration/( | Predictive/% | Actual/% | Relative error/% |
---|---|---|---|---|---|---|
1 | 30 | 25 | 2 | 92.32 | 90.26 | 2.28 |
2 | 30 | 55 | 2 | 75.39 | 80.33 | -6.15 |
3 | 90 | 80 | 2 | 60.32 | 55.53 | 8.63 |
4 | 60 | 25 | 7 | 73.23 | 77.43 | -5.42 |
5 | 30 | 55 | 7 | 70.31 | 70.97 | -0.93 |
6 | 90 | 80 | 7 | 38.36 | 45.54 | -15.77 |
1 | 秦川丽, 张巨生, 唐冬雁, 等 . 聚氨酯/乙烯基酯树脂互穿聚合物网络合成动力学及相容性[J]. 化工学报, 2004, 55(2): 253-258. |
Qin C L , Zhang J S , Tang D Y , et al . Kinetics and compatibility of polyurethane/vinyl ester interpenetrating polymer networks[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(2): 253-258. | |
2 | Sen R , Mullins G . Application of FRP composites for underwater piles repair[J]. Composites Part B Engneering, 2007, 38(5): 751-758. |
3 | Monti M , Natali M , Petrucci R , et al . Carbon nanofibers for strain and impact damage sensing in glass fiber reinforced composites based on an unsaturated polyester resin[J]. Polymer Composites, 2011, 32(5): 766-775. |
4 | Alia C , Jofre-Reche J A , Suárez J C , et al . Characterization of the chemical structure of vinyl ester resin in a climate chamber under different conditions of degradation[J]. Polymer Degradation & Stability, 2018, 153: 88-99. |
5 | Yadav S , Gangwar S , Singh S . Micro/nano reinforced filled metal alloy composites: a review over current development in aerospace and automobile applications[J]. Materials Today Proceedings, 2017, 4(4): 5571-5582. |
6 | 徐国强, 代礼葵, 孙耀宁 . 碱性腐蚀对玻纤增强树脂基复合材料性能的影响[J]. 工程塑料应用, 2018, (11): 94-99. |
Xu G Q , Dai L K , Sun Y N . Effects of alkaline corrosion on properties of glass fiber reinforced resin matrix composites[J]. Engineering Plastics Applications, 2018, (11): 94-99. | |
7 | Malkapuram R , Kumar V , Negi Y S . Recent development in natural fiber reinforced polypropylene composites[J]. Journal of Reinforced Plastics & Composites, 2009, 28(10): 1169-1189. |
8 | Hollaway L C . Handbook of Polymer Composites for Engineers[M]. Elsevier Science, 1994. |
9 | 程基伟, 王天民 . TWINTEX纤维增强塑料的应力腐蚀开裂[J]. 材料研究学报, 2005, (3): 269-276. |
Cheng J W , Wang T M . Stress corrosion cracking of TWINTEX fiber reinforced plastics [J]. Journal of Materials Research, 2005, (3): 269-276. | |
10 | 何伟, 廖功雄, 靳奇峰, 等 . 新型特种工程塑料聚芳醚砜酮和聚芳醚砜热分解动力学及寿命预测[J]. 化工学报, 2006, 57(4): 981-986. |
He W , Liao G X , Jin Q F , et al . Thermal decomposition kinetics and life prediction of poly(aryl ether sulfone ketone) and poly(aryl ether sulfone) new engineering plastics [J].Journal of Chemical Industry and Engineering(China), 2006, 57(4): 981-986. | |
11 | Xu P , Yates S J , Nino J C . Hydrothermal corrosion of magnesia-pyrochlore composites for inert matrix materials[J]. Journal of Composite Materials, 2010, 44(12): 1533-1545. |
12 | Husnayain F , Latif M , Garniwa I . Transformer oil lifetime prediction using the Arrhenius law based on physical and electrical characteristics[C]// 2015 International Conference on Quality in Research (QiR). Lombok, Indonesia, 2016. |
13 | Kuo H C , Wu L J . Prediction of heat-affected zone using grey theory[J]. Journal of Materials Processing Tech., 2002, 120(1): 151-168. |
14 | Guzman V A , Brøndsted P . Effects of moisture on glass fiber-reinforced polymer composites[J]. Journal of Composite Materials. 2015, 49(8): 911-920. |
15 | Yu Y H , Li P , Sui G , et al . Effects of hygrothermal aging on the thermal-mechanical properties of vinylester resin and its pultruded carbon fiber composites[J]. Polymer Composites, 2009, 30(10): 1458-1464. |
16 | 韩露, 马芳武, 陈实现, 等 . 玄武岩纤维增强聚乳酸力学性能及耐老化性能[J]. 化工学报, 2019, 70(3): 1171-1178. |
Han L , Ma F W , Chen S X , et al . Mechanical properties and aging resistance of basalt fiber reinforced polylactic acid [J]. CIESC Journal, 2019, 70(3): 1171-1178. | |
17 | Hsu K L , Gupta H V , Sorooshian S . Artificial neural network modeling of the rainfall-runoff process[J]. Water Resources Research, 1995, 31(10): 2517-2530. |
18 | Park D C , El-Sharkawi M A , Marks R J , et al . Electric load forecasting using an artificial neural network[J]. IEEE Transactions on Power Systems, 2013, 6(2): 442-449. |
19 | Vassilopoulos A P , Georgopoulos E F , Dionysopoulos V . Artificial neural networks in spectrum fatigue life prediction of composite materials[J]. International Journal of Fatigue, 2007, 29(1): 20-29. |
20 | 郑晶晶, 张钦礼, 王新民, 等 . 基于BP神经网络的充填钻孔使用寿命预测[J]. 矿业工程研究, 2008, 30(4): 40-44. |
Zheng J J , Zhang Q L , Wang X M , et al . Life prediction of filling boreholes based on BP neural network [J]. Mining Engineering Research, 2008, 30 (4): 40-44. | |
21 | 胡中永, 邬友英, 李艳华 . GB/T 1449—2005: 纤维增强塑料弯曲性能试验方法[S]. 北京: 中国标准出版社. 2005. |
Hu Z Y , Hu Y Y , Li Y H . GB/T 1449—2005: Test Method for Bending Properties of Fiber Reinforced Plastics [S]. Beijing: China Standard Press, 2005. | |
22 | Zhu M X , Zhang D L . Study on the algorithms of selecting the radial basis function center[J]. Journal of Anhui University, 2000, 24(1): 78. |
23 | 蔡斌, 许龙飞, 郝丽妍 . 基于BP神经网络的受火后RC梁钢筋温度预测[J]. 北方建筑, 2019, 4(4): 23-27. |
Cai B , Xu L F , Hao L Y . Prediction of RC beam rebar temperature after fire based on BP neural network [J]. Northern Architecture, 2019, 4 (4): 23-27. | |
24 | 张斌 . 金属板料单点渐进成形的回弹研究[D].西安: 陕西科技大学, 2019. |
Zhang B . Research on springback of sheet metal single point incremental forming [D]. Xi an: Shaanxi University of Science and Technology, 2019. | |
25 | 于桂杰, 赵崇, 迟建伟, 等 . 基于人工神经网络的连续油管疲劳寿命预测[J]. 中国石油大学学报(自然科学版), 2018, 227(3): 136-141. |
Yu G J , Zhao C , Chi J W , et al . Fatigue life prediction of coiled tubing based on artificial neural network [J]. Journal of China University of Petroleum (Natural Science Edition), 2018, 227(3): 136-141. | |
26 | 李晓骏, 许凤和, 陈新文 . 先进聚合物基玻璃纤维增强塑料的热氧老化研究[J]. 材料工程, 1999, (12): 19-22+30. |
Li X J , Xu F H , Chen X W . Study on thermo-oxygen aging of advanced polymer matrix composites [J]. Material Engineering, 1999, (12): 19-22+30. | |
27 |
Inácio A L N , Nonato R C , Bonse B C . Mechanical and thermal behavior of aged composites of recycled PP/EPDM/talc reinforced with bamboo fiber[J]. Polymer Testing, 2018, DOI: 10.1016/j.polymertesting.2018.10.035
DOI |
28 | 栗晓飞, 张琦, 项民, 等 . 炭纤维增强树脂基玻璃纤维增强塑料模拟加速腐蚀方法的研究[J]. 材料工程, 2016, (2): 5-9. |
Li X F , Zhang Q , Xiang M , et al . Study on the simulated accelerated corrosion method of carbon fiber reinforced resin matrix composites [J]. Material Engineering, 2016, (2): 5-9. | |
29 | Putić S , Stamenović M , Petrović J , et al . Effect of alkaline solutions on the tensile properties of glass-polyester pipes[J]. Materials & Design, 2011, 32(4): 2456-2461. |
30 | 侯锐钢, 尚琪冬, 黎大胜 . 混酸介质加速老化条件下玻璃纤维/溴化环氧乙烯基酯复合材料的耐久性[J]. 复合材料学报, 2017, 34(6): 1212-1220. |
Hou R G , Shang Q D , Li D S . Durability of glass fiber/brominated vinyl epoxy ester composites under accelerated ageing in mixed acid media [J]. Journal of Composite Materials, 2017, 34(6): 1212-1220. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[3] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[4] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[7] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[8] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[9] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[10] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[11] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[12] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[13] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[14] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[15] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||