1 |
Feng D, Feng Y, Qiu L, et al. Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 578-605.
|
2 |
Sinha-Ray S, Sahu R P, Yarin A L. Nano-encapsulated smart tunable phase change materials[J]. Soft Matter, 2011, 7(19): 8823-8827.
|
3 |
Xu Q, Feng J, Zhang S. Combined effects of different temperature and pressure loads on the “L”-type large-diameter buried pipeline[J]. International Journal of Heat and Mass Transfer, 2017, 111: 953-961.
|
4 |
Feng D, Feng Y, Zang Y, et al. Phase change in modified metal organic frameworks MIL-101 (Cr): mechanism on highly improved energy storage performance[J]. Microporous and Mesoporous Materials, 2019, 280: 124-132.
|
5 |
Chen J, Zhang G, Li B. How to improve the accuracy of equilibrium molecular dynamics for computation of thermal conductivity?[J]. Physics Letters A, 2010, 374(23): 2392-2396.
|
6 |
Jiang F, Zhang L, Jiang Z, et al. Diatomite-based porous ceramics with high apparent porosity: pore structure modification using calcium carbonate[J]. Ceramics International, 2019, 45(5): 6085-6092.
|
7 |
Xu Q, Feng J, Zhang S. Influence of end side displacement load on stress and deformation of “L”-type large-diameter buried pipe network[J]. Applied Thermal Engineering, 2017, 126: 245-254.
|
8 |
Jiang F, Li Y, Zhao L, et al. Novel ceramics prepared from inferior clay rich in CaO and Fe2O3: properties, crystalline phases evolution and densification process[J]. Applied Clay Science, 2017, 143: 199-204.
|
9 |
Xu Q, Feng J. Analysis of nozzle gas speed on the performance of the zoned and staged gas-fired radiant tube[J]. Applied Thermal Engineering, 2017, 118: 734-741.
|
10 |
Jiang F, Zhang L, Mukiza E, et al. Formation mechanism of high apparent porosity ceramics prepared from fly ash cenosphere[J]. Journal of Alloys and Compounds, 2018, 749: 750-757.
|
11 |
Jiang F, Zhang L, She X, et al. Skeleton materials for shape-stabilization of high temperature salts based phase change materials: a critical review[J]. Renewable and Sustainable Energy Reviews, 2019: 109539.
|
12 |
Tang J, Yang M, Dong W, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity[J]. RSC Advances, 2016, 6(46): 40106-40114.
|
13 |
Cui L, Feng Y, Zhang X. Enhancement of heat conduction in carbon nanotubes filled with fullerene molecules[J]. Physical Chemistry Chemical Physics, 2015, 17(41): 27520-27526.
|
14 |
Liu B, Baimova J A, Reddy C D, et al. Interface thermal conductance and rectification in hybrid graphene/silicene monolayer[J]. Carbon, 2014, 79: 236-244.
|
15 |
Mortazavi B, Ahzi S. Thermal conductivity and tensile response of defective graphene: a molecular dynamics study[J]. Carbon, 2013, 63: 460-470.
|
16 |
Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage[J]. Nano Letters, 2008, 8(10): 3166-3170.
|
17 |
Fan Z, Yan J, Zhi L, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Advanced Materials, 2010, 22(33): 3723-3728.
|
18 |
Dong X, Chen J, Ma Y, et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chemical Communications, 2012, 48(86): 10660-10662.
|
19 |
Lee J, Varshney V, Brown J S, et al. Single mode phonon scattering at carbon nanotube-graphene junction in pillared graphene structure[J]. Applied Physics Letters, 2012, 100(18): 183111.
|
20 |
Park J, Prakash V. Thermal transport in 3D pillared SWCNT-graphene nanostructures[J]. Journal of Materials Research, 2013, 28(7): 940-951.
|
21 |
Jha N, Ramesh P, Bekyarova E, et al. High energy density supercapacitor based on a hybrid carbon nanotube–reduced graphite oxide architecture[J]. Advanced Energy Materials, 2012, 2(4): 438-444.
|
22 |
Zhao M Q, Liu X F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano, 2012, 6(12): 10759-10769.
|
23 |
Dongmei Z, Zhenwei L, Lingdi L, et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chimica Sinica, 2014, 72(2): 185-200.
|
24 |
Loh G C, Teo E H T, Tay B K. Tuning the Kapitza resistance in pillared-graphene nanostructures[J]. Journal of Applied Physics, 2012, 111(1): 013515.
|
25 |
Loh G C, Teo E H T, Tay B K. Interpillar phononics in pillared-graphene hybrid nanostructures[J]. Journal of Applied Physics, 2011, 110(8): 083502.
|
26 |
Kamaliya R, Singh B P, Gupta B K, et al. Large scale production of three dimensional carbon nanotube pillared graphene network for bi-functional optical properties[J]. Carbon, 2014, 78: 147-155.
|
27 |
Zhang Z, Kutana A, Roy A, et al. Nanochimneys: topology and thermal conductance of 3D nanotube-graphene cone junctions[J]. The Journal of Physical Chemistry C, 2017, 121(2): 1257-1262.
|
28 |
Thiyagarajan P, Oh M W, Yoon J C, et al. Thermoelectric properties of nanoporous three-dimensional graphene networks[J]. Applied Physics Letters, 2014, 105(3): 033905.
|
29 |
Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems[J]. Physical Review B, 1989, 39(8): 5566.
|
30 |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
|
31 |
Liu Y, Feng Y, Huang Z, et al. Thermal conductivity of 3D boron-based covalent organic frameworks from molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2016, 120(30): 17060-17068.
|
32 |
Zhang J, Feng Y, Yuan H, et al. Thermal properties of C17H36/MCM-41 composite phase change materials[J]. Computational Materials Science, 2015, 109: 300-307.
|
33 |
Tretiakov K V, Scandolo S. Thermal conductivity of solid argon at high pressure and high temperature: a molecular dynamics study[J]. The Journal of Chemical Physics, 2004, 121(22): 11177-11182.
|
34 |
Zhong H, Lukes J R. Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling[J]. Physical Review B, 2006, 74(12): 125403.
|
35 |
Loong C K, Vashishta P, Kalia R K, et al. Phonon density of states and oxygen-isotope effect in Ba1-xKxBiO3[J]. Physical Review B, 1992, 45(14): 8052.
|
36 |
Zhang X, Jiang J. Thermal conductivity of zeolitic imidazolate framework-8: a molecular simulation study[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18441-18447.
|
37 |
Amirjalayer S, Snurr R Q, Schmid R. Prediction of structure and properties of boron-based covalent organic frameworks by a first-principles derived force field[J]. The Journal of Physical Chemistry C, 2012, 116(7): 4921-4929.
|