CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 669-679.DOI: 10.11949/0438-1157.20190857
• Separation engineering • Previous Articles Next Articles
Rui XING(),Nan JIANG,Bing LIU,Yaxiong AN,Yayan WANG,Donghui ZHANG()
Received:
2019-07-25
Revised:
2019-12-24
Online:
2020-02-05
Published:
2020-02-05
Contact:
Donghui ZHANG
通讯作者:
张东辉
作者简介:
邢瑞(1995—),男,硕士研究生, 基金资助:
CLC Number:
Rui XING, Nan JIANG, Bing LIU, Yaxiong AN, Yayan WANG, Donghui ZHANG. Simulation of oxygen production via VPSA optimized based on MPC control strategy[J]. CIESC Journal, 2020, 71(2): 669-679.
邢瑞, 江南, 刘冰, 安亚雄, 汪亚燕, 张东辉. 基于MPC控制技术优化VPSA制氧工艺的模拟[J]. 化工学报, 2020, 71(2): 669-679.
Add to citation manager EndNote|Ris|BibTeX
Parameter | N 2 | O 2 | Ar |
---|---|---|---|
IP 1/(kmol·kg -1·Pa -1) | 7.107×10 -10 | 6.861×10 -9 | 6.254×10 -9 |
IP 2/K | 2910 | 1567 | 1334 |
IP 3/Pa -1 | 2.563×10 -8 | 4.625×10 -8 | 4.374×10 -8 |
IP 4/K | 1612 | 441.3 | 450.6 |
Δ H/(kJ·mol -1) | -23.43 | -13.22 | -12.65 |
Table 1 Fitting parameters of extended Langmuir model
Parameter | N 2 | O 2 | Ar |
---|---|---|---|
IP 1/(kmol·kg -1·Pa -1) | 7.107×10 -10 | 6.861×10 -9 | 6.254×10 -9 |
IP 2/K | 2910 | 1567 | 1334 |
IP 3/Pa -1 | 2.563×10 -8 | 4.625×10 -8 | 4.374×10 -8 |
IP 4/K | 1612 | 441.3 | 450.6 |
Δ H/(kJ·mol -1) | -23.43 | -13.22 | -12.65 |
Parameter | Value |
---|---|
Tfeed/K | 298 |
c pg/(kJ·kg -1·K -1) | 1.03 |
c ps/(kJ·kg -1·K -1) | 1.21 |
Rp/m | 8.5×10 -4 |
1.30×10 -4 | |
1.29×10 -4 | |
D, v, Ar/(m 2·s -1) | 1.24×10 -4 |
h/(W·m -2·K -1) | 0.3 |
kg/(W·m -1·K -1) | 0.02452 |
ks/(W·m -1·K -1) | 0.48 |
Table 2 Mass and heat transfer parameters
Parameter | Value |
---|---|
Tfeed/K | 298 |
c pg/(kJ·kg -1·K -1) | 1.03 |
c ps/(kJ·kg -1·K -1) | 1.21 |
Rp/m | 8.5×10 -4 |
1.30×10 -4 | |
1.29×10 -4 | |
D, v, Ar/(m 2·s -1) | 1.24×10 -4 |
h/(W·m -2·K -1) | 0.3 |
kg/(W·m -1·K -1) | 0.02452 |
ks/(W·m -1·K -1) | 0.48 |
时间 /s | BED1 | BED2 |
---|---|---|
6 | AD 1 | VU 2 |
3 | AD 2 | PUR |
3 | ED | ER |
10 | VU 1 | FR |
6 | VU 2 | AD 1 |
3 | PUR | AD 2 |
3 | ER | ED |
10 | FR | VU 1 |
Table 3 Schedule of VPSA process
时间 /s | BED1 | BED2 |
---|---|---|
6 | AD 1 | VU 2 |
3 | AD 2 | PUR |
3 | ED | ER |
10 | VU 1 | FR |
6 | VU 2 | AD 1 |
3 | PUR | AD 2 |
3 | ER | ED |
10 | FR | VU 1 |
方程 | 方程表达式 |
---|---|
组分质量方程 | |
总质量方程 | |
能量衡算方程 | |
动量方程 | |
Langmuir 吸附等温方程 | |
线性推动力方程 | |
扩散系数 | |
边界条件 | |
阀门方程 |
Table 4 Model equations of VPSA process
方程 | 方程表达式 |
---|---|
组分质量方程 | |
总质量方程 | |
能量衡算方程 | |
动量方程 | |
Langmuir 吸附等温方程 | |
线性推动力方程 | |
扩散系数 | |
边界条件 | |
阀门方程 |
变量 | 初始值 | 下限值 | 上限值 | 优化值 |
---|---|---|---|---|
决策变量 | ||||
进料流量/(m 3·h -1) | 3.0 | 1.0 | 15.0 | 4.2 |
终升压流量/(m 3·h -1) | 4.8 | 1.0 | 15.0 | 6.0 |
抽真空流量/(m 3·h -1) | 7.2 | 1.0 | 30.0 | 18.6 |
吸附出口阀门开度/(mol·(bar·s) -1) | 0.2 | 0.01 | 100.0 | 0.97 |
均压步骤阀门开度/(mol·(bar·s) -1) | 0.2 | 0.01 | 10.0 | 0.86 |
冲洗步骤阀门开度/(mol·(bar·s) -1) | 0.2 | 0.01 | 30.0 | 2.6 |
优化目标 | ||||
纯度/% | 90.2 | 92 | 100 | 92.03 |
回收率/% | 58.7 | 60 | 100 | 60.5 |
能耗/(kW·h·m -3) | 0.42 | 0.31 |
Table 5 Upper and lower bounds, initial and optimal value of decision variables and optimization objectives
变量 | 初始值 | 下限值 | 上限值 | 优化值 |
---|---|---|---|---|
决策变量 | ||||
进料流量/(m 3·h -1) | 3.0 | 1.0 | 15.0 | 4.2 |
终升压流量/(m 3·h -1) | 4.8 | 1.0 | 15.0 | 6.0 |
抽真空流量/(m 3·h -1) | 7.2 | 1.0 | 30.0 | 18.6 |
吸附出口阀门开度/(mol·(bar·s) -1) | 0.2 | 0.01 | 100.0 | 0.97 |
均压步骤阀门开度/(mol·(bar·s) -1) | 0.2 | 0.01 | 10.0 | 0.86 |
冲洗步骤阀门开度/(mol·(bar·s) -1) | 0.2 | 0.01 | 30.0 | 2.6 |
优化目标 | ||||
纯度/% | 90.2 | 92 | 100 | 92.03 |
回收率/% | 58.7 | 60 | 100 | 60.5 |
能耗/(kW·h·m -3) | 0.42 | 0.31 |
1 | Helfferich F G. Principles of adsorption & adsorption processes, by D. M. Ruthven, John Wiley & Sons, 1984, xxiv + 433 pp [J]. AIChE Journal, 1985, 31( 3): 523- 524. |
2 | Ding Z Y, Han Z Y, Fu Q, et al. Optimization and analysis of the VPSA process for industrial-scale oxygen production[J]. Adsorption, 2018, 24: 499- 516. |
3 | Zhu X Q, Liu Y S, Yang X, et al. Progress of adsorbent modified and process of pressure swing adsorption for oxygen production in China[J]. Chem. Ind. Eng. Prog., 2014, 55: 119- 124. |
4 | Li Y L, Liu Y S. Oxygen enrichment and its application to life support systems for workers in high-altitude areas[J]. International Journal of Occupational and Environmental Health, 2014, 20( 3): 207- 214. |
5 | Ruthven D M, Farooq S. Air separation by pressure swing adsorption[J]. Gas Separation & Purification, 1990, 4( 3): 141- 148. |
6 | 刘应书, 祝显强, 杨雄, 等. 快速真空变压吸附制氧实验研究[J]. 医用气体工程, 2016, 1: 29- 32. |
Liu Y S, Zhu X Q, Yang X, et al. An experimental study of rapid vacuum pressure swing adsorption for producing oxygen [J]. Medical Gases Engineering, 2016, 1: 29- 32. | |
7 | Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive control: stability and optimality[J]. Automatica, 2000, 36( 6): 789- 814. |
8 | Khajuria H, Pistikopoulos E N. Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems[J]. Journal of Process Control, 2011, 21( 1): 151- 163. |
9 | 蒲荣. 可编程控制器在变压吸附装置中的应用[J]. 天然气化工(C1化学与化工), 1999, 24( 1): 44- 48. |
Pu R. Application of programmable controller in pressure swing adsorption device [J]. Natural Gas Chemical Industry, 1999, 24( 1): 44- 48. | |
10 | Froisy J B. Model predictive control: past, present and future[J]. Isa Transactions, 1999, 33( 3): 235- 243. |
11 | Sircar S, Hanley B F. Production of oxygen enriched air by rapid pressure swing adsorption[J]. Adsorption, 1995, 1( 4): 313- 320. |
12 | Bitzer M. Model-based Nonlinear Tracking Control of Pressure Swing Adsorption Plants[M]// Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems. Berlin: Springer, 2005: 403- 418. |
13 | Kouramas K I, Faísca N P, Panos C, et al. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming[J]. Automatic, 2011, 47( 8): 1638- 1645. |
14 | Khajuria H, Pistikopoulos E N. Optimization and control of pressure swing adsorption processes under uncertainty [J]. AIChE Journal, 2013, 59( 1): 120- 131. |
15 | Sereno C, Rodrigues A. Can steady-state momentum equations be used in modeling pressurization of adsorption beds[J]. Gas Separation & Purification, 1993, 7( 3): 167- 174. |
16 | Sun W N, Shen Y H, Zhang D H, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N 2/CH 4 separation under external disturbances [J]. Industrial & Engineering Chemistry Research, 2015, 54( 30): 7489- 7501. |
17 | 丁兆阳, 韩治洋, 石文荣, 等. 快速变压吸附制氧动态传质系数模拟分析[J]. 化工学报, 2018, 69( 2): 759- 768. |
Ding Z Y, Han Z Y, Shi W R, et al. Analysis of dynamic effective mass transfer coefficients of rapid pressure swing adsorption process for oxygen production[J]. CIESC Journal, 2018, 69( 2): 759- 768. | |
18 | Chihara K, Yoneda I, Morishita S, et al. Simulation of pressure swing adsorption for air separation[J]. Studies in Surface Science & Catalysis, 1986, 28: 563- 570. |
19 | Knaebel K S, Hill F B. Pressure swing adsorption: development of an equilibrium theory for gas separations[J]. Chemical Engineering Science, 1985, 40( 12): 2351- 2360. |
20 | Li D D, Zhou Y, Shen Y H, et al. Experiment and Simulation for Separating CO 2/N 2 by dual-reflux pressure swing adsorption process [J]. Chemical Engineering Journal, 2016, 297: 315- 324. |
21 | Banerje A, Arkun Y. Model predictive control of plant transitions using a new identification technique for interpolating nonlinear models[J]. Process Control, 1998, 8( 5): 441- 457. |
22 | Arefi M M, Montazeri A, Poshtan J, et al. Wiener-neural identification and predictive control of a more realistic plug-flow tubular reactor[J]. Chemical Engineering Journal, 2008, 138( 1/ 2/ 3): 274- 282. |
23 | Hasan M M F, Baliban R C, Elia J A, et al. Modeling, simulation, and optimization of postcombustion CO 2 capture for variable feed concentration and flow rate(2): Pressure swing adsorption and vacuum swing adsorption processes [J]. Industrial & Engineering Chemistry Research, 2016, 51( 48): 15665- 15682. |
24 | Joss L, Capra F, Gazzani M, et al. MO-MCS: an efficient multi-objective optimization algorithm for the optimization of temperature/pressure swing adsorption cycles [C]// 26th European Symposium on Computer Aided Process Engineering. 2016: 1467- 1472. |
25 | Yang H W, Yin C B, Jiang B, et al. Optimization and analysis of a VPSA process for N 2/CH 4 separation [J]. Separation & Purification Technology, 2014, 134( 1): 232- 240. |
26 | Agarwal A, Biegler L T, Zitney S E. Simulation and optimization of pressure swing adsorption systems using reduced-order modeling[J]. Industrial & Engineering Chemistry Research, 2009, 48( 5): 2327- 2343. |
27 | Bitzer M. Model-based Nonlinear Tracking Control of Pressure Swing Adsorption Plants [M]// Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems. Springer Berlin Heidelberg, 2005: 403- 418. |
28 | Sentoni G B, Biegler L T, Guiver J B, et al. State-space nonlinear process modeling: identification and universality[J]. AIChE Journal, 1998, 44( 10): 2229- 2239. |
29 | Santos G C A. Dynamic study of the pressure swing adsorption process for biogas upgrading and its responses to feed disturbances[J]. Industrial & Engineering Chemistry Research, 2013, 52( 15): 5445- 5454. |
30 | Zhu Y. Multivariable system identification for process control[J]. International Journal of Modelling Identification & Control, 2013, 6( 1): 335- 344. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[5] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[6] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[9] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[10] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[11] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[12] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[13] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[14] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[15] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||