CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1424-1431.DOI: 10.11949/0438-1157.20190994
• Thermodynamics • Previous Articles Next Articles
Received:
2019-09-02
Revised:
2019-12-26
Online:
2020-04-05
Published:
2020-04-05
Contact:
Ming LIU
通讯作者:
刘明
作者简介:
刘明(1976—),男,高级工程师,基金资助:
CLC Number:
Ming LIU, Zhe XU. Phonon heat conduction and quantum correction of methane hydrate[J]. CIESC Journal, 2020, 71(4): 1424-1431.
刘明, 徐哲. 甲烷水合物声子导热及量子修正[J]. 化工学报, 2020, 71(4): 1424-1431.
Add to citation manager EndNote|Ris|BibTeX
T/K | τsh,ac/ps | τint,ac/ps | τlg,ac/ps | τsh,opt/ps | τlg,opt/ps | ω/ (rad·s-1) |
---|---|---|---|---|---|---|
30 | 0.411 | 4.95 | 0.0546 | 0.968 | 172.45 | |
50 | 0.2 | 2.33 | 0.0539 | 0.685 | 171.82 | |
75 | 0.142 | 2.17 | 0.0521 | 0.570 | 168.68 | |
100 | 0.133 | 1.83 | 0.0492 | 0.1836 | 166.79 | |
150 | 0.0446 | 0.467 | 1.25 | 0.0479 | 0.1616 | 163.01 |
Table 1 Phonon relaxation time and peak frequency of optical modeontribution to thermal conductivity
T/K | τsh,ac/ps | τint,ac/ps | τlg,ac/ps | τsh,opt/ps | τlg,opt/ps | ω/ (rad·s-1) |
---|---|---|---|---|---|---|
30 | 0.411 | 4.95 | 0.0546 | 0.968 | 172.45 | |
50 | 0.2 | 2.33 | 0.0539 | 0.685 | 171.82 | |
75 | 0.142 | 2.17 | 0.0521 | 0.570 | 168.68 | |
100 | 0.133 | 1.83 | 0.0492 | 0.1836 | 166.79 | |
150 | 0.0446 | 0.467 | 1.25 | 0.0479 | 0.1616 | 163.01 |
系数 | k/(W·m-1·K-1) | kww/(W·m-1·K-1) | kmm/( W·m-1·K-1) | kwm/(W·m-1·K-1) |
---|---|---|---|---|
1 | 0.72 | 0.66 | 0.007 | 0.058 |
2 | 0.74 | 0.67 | 0.010 | 0.062 |
3 | 0.77 | 0.69 | 0.015 | 0.066 |
4 | 0.79 | 0.70 | 0.023 | 0.072 |
Table 2 Heat conductivity of methane hydrate with various strengths
系数 | k/(W·m-1·K-1) | kww/(W·m-1·K-1) | kmm/( W·m-1·K-1) | kwm/(W·m-1·K-1) |
---|---|---|---|---|
1 | 0.72 | 0.66 | 0.007 | 0.058 |
2 | 0.74 | 0.67 | 0.010 | 0.062 |
3 | 0.77 | 0.69 | 0.015 | 0.066 |
4 | 0.79 | 0.70 | 0.023 | 0.072 |
1 | Waite W F, Stern L A, Kirby S H, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate[J]. Geophys. J. Int., 2007, 169(2): 767-774. |
2 | Takeya S, Kida M, Minami H, et al. Structure and thermal expansion of natural gas clathrate hydrate[J]. Chem. Eng. Sci., 2006, 61: 2670-2674. |
3 | English N J, Macelroy J M D. Structural and dynamical properties of methane clathrate hydrates[J]. J. Comput. Chem., 2003, 24: 1569-1581. |
4 | 万丽华, 梁德青, 吴能友, 等. 客体分子数对甲烷水合物导热性能影响的分子动力学模拟[J]. 化工学报, 2012, 63(2): 382-386. |
Wan L H, Liang D Q, Wu N Y, et al. Molecular dynamics simulation on influence of guest molecule number on methane hydrate thermal performance[J]. CIESC Journal, 2012, 63(2): 382-386. | |
5 | 周广刚, 孙晓亮, 卢贵武. 温度对甲烷水合物分解影响的分子动力学模拟[J]. 人工晶体学报, 2017, 46(8): 1608-1613. |
Zhou G G, Sun X L, Lu G W. Molecular dynamics simulation of temperature effect on methane hydrate decomposition[J]. Journal of Synthetic Crystals, 2017, 46(8): 1608-1613. | |
6 | Inoue R, Tanaka H, Nakanishi K. Molecular dynamics simulation study of the anomalous thermal conductivity of clathrate hydrates[J]. Chem. Phys., 1996, 104(23): 9569-9577. |
7 | Schober H, Itoh H, Klapproth A, et al. Guest-host coupling and anharmonicity in clathrate hydrates[J]. Eur. Phys. J. E, 2003, 12(1): 41-49. |
8 | Ning F, Glavatskiy K, Ji Z, et al. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations[J]. Phys. Chem. Chem. Phys., 2014, 17(4): 2869-2883. |
9 | Chialvo A A, Houssa M, Cummings P T. Molecular dynamics study of the structure and thermophysical properties of model sI clathrate hydrates[J]. J. Phys. Chem. B, 2002, 106(2): 442-451. |
10 | Rosenbaum E J, English N J, Johnson J K, et al. Thermal conductivity of methane hydrate from experiment and molecular simulation[J]. J. Phys. Chem. B, 2007, 111(46): 13194-13205. |
11 | Jiang H, Myshakin E M, Jordan K D, et al. Molecular dynamics simulations of the thermal conductivity of methane hydrate[J]. J. Phys. Chem. B, 2008, 112(33): 10207-10216. |
12 | Jiang H, Jordan K D. Comparison of the properties of xenon, methane, and carbon dioxide hydrates from equilibrium and nonequilibrium molecular dynamics simulations[J]. J. Phys. Chem. C, 2009, 114(12): 5555-5564. |
13 | Krivchikov A I, Gorodilov B Y, Korolyuk O A, et al. Thermal conductivity of Xe clathrate hydrate at low temperatures [J]. Phys. Rev. B, 2006, 73: 064203. |
14 | Tse J S, White M A. Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate[J]. J. Phys. Chem., 1988, 92(17): 5006-5011. |
15 | Koza M M, Johnson M R, Viennois R, et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites[J]. Nat. Mater., 2008, 7(10): 805-810. |
16 | English N J, John S T, Carey D J. Mechanisms for thermal conduction in various polymorphs of methane hydrate[J]. Phys. Rev. B, 2009, 80(13): 134306. |
17 | Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117(1): 1-19. |
18 | Bugel M, Galliero G. Thermal conductivity of the Lennard-Jones fluid: an empirical correlation[J]. Chem. Phys., 2008, 352(1): 249-257. |
19 | Luty B A, van Gunsteren W F. Calculating electrostatic interactions using the particle-particle particle-mesh method with nonperiodic long-range interactions[J]. J. Phys. Chem., 1996, 100(7): 2581-2587. |
20 | Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. J. Chem. Phys., 1995, 103(19): 8577-8593. |
21 | Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. J. Chem. Phys., 1984, 81(1): 511-519. |
22 | Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Phys. Rev. A, 1985, 31(3): 1695-1697. |
23 | Lukes J R, Zhong H. Thermal conductivity of individual single-wall carbon nanotubes[J]. J. Heat Transfer, 2007, 129(6): 705-716. |
24 | Krivchikov A I, Gorodilov B Y, Korolyuk O A, et al. Thermal conductivity of methane-hydrate[J]. J. Low Temp. Phys., 2005, 139(5/6): 693-702. |
25 | 姚贵策, 苑昆鹏, 吴硕, 等. 独立探头3ω法表征甲烷水合物热导率和热扩散率[J]. 化工学报, 2016, 67(5): 1665-1672. |
Yao G C, Yuan K P, Wu S, et al. Characterizing of thermal conductivity and thermal diffusivity of methane hydrate by free-standing sensor 3ω method[J]. CIESC Journal, 2016, 67(5): 1665-1672. | |
26 | Cook J G, Leaist D G. An exploratory study of the thermal conductivity of methane hydrate[J]. Geophys. Res. Lett., 1983, 10(5): 397-399. |
27 | Ladd A J C, Moran B, Hoover W G. Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics[J]. Phys. Rev. B, 1986, 34(8): 5058-5064. |
28 | McGaughey A J H, Kaviany M. Thermal conductivity decomposition and analysis using molecular dynamics simulations(Part Ⅰ): Lennard-Jones argon [J]. Int. J. Heat Mass Transfer, 2004, 47(8): 1783-1798. |
29 | McGaughey A J H, Kaviany M. Thermal conductivity decomposition and analysis using molecular dynamics simulations(Part Ⅱ): Complex silica structures[J]. Int. J. Heat Mass Transfer, 2004, 47(8): 1799-1816. |
30 | English N J, Tse J S. Mechanisms for thermal conduction in methane hydrate[J]. Phys. Rev. Lett., 2009, 103: 015901. |
31 | Greathouse J A, Cygan R T, Simmons B A. Vibrational spectra of methane clathrate hydrates from molecular dynamics simulation[J]. J. Phys. Chem. B, 2006, 110(13): 6428-6431. |
32 | Wang Z L, Yuan K P, Tang D W. Thermal transport in methane hydrate by molecular dynamics and phonon inelastic scattering[J]. Chin. Phys. Lett., 2015, 32(10): 104401. |
[1] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[2] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[3] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
[4] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[5] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
[6] | Huan XU, Lyu KE, Shenghui ZHANG, Zilin ZHANG, Guangdong HAN, Jinsheng CUI, Daoyuan TANG, Donghui HUANG, Jiefeng GAO, Xinjian HE. Upgrading dispersion and interfacial morphologies for thermally conductive polypropylene composites by in situ growth of carbon nanotubes at graphene oxide [J]. CIESC Journal, 2022, 73(11): 5150-5157. |
[7] | Huihui HU, Liang YANG, Daoping LIU, Ke ZHANG. Kinetics of methane hydrate formation in droplets of low-dose superabsorbent resin solution [J]. CIESC Journal, 2022, 73(10): 4659-4667. |
[8] | LIANG Heng, LIU Yicai, WANG Qianxu, ZHAO Xiangle, LI Zheng. Research progress of effective thermal conductivity of open-cell foam metal composites [J]. CIESC Journal, 2021, 72(S1): 7-20. |
[9] | YANG Zhen, YAO Yuanpeng, WU Huiying. Analysis on thermal conduction characteristics of metal foam based on conduction form factor [J]. CIESC Journal, 2021, 72(3): 1295-1301. |
[10] | Junhua PEI, Liang YANG, Xin WANG, Han HU, Daoping LIU. Experimental study on kinetics of methane hydrate formation enhanced by copper foam [J]. CIESC Journal, 2021, 72(11): 5751-5760. |
[11] | Dongmin TIAN, Yanpeng WU, Fengjun CHEN. Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM [J]. CIESC Journal, 2020, 71(S1): 220-226. |
[12] | Yan SHI, Junwen ZHAO, Yanping YUAN, Guangze DAI, Jing HAN. Effect of Cu content on phase change thermal storage properties of Al-Cu-Si alloy [J]. CIESC Journal, 2020, 71(5): 2017-2023. |
[13] | Zepei YU, Yanhui FENG, Daili FENG, Xinxin ZHANG. Thermal conductivity of three dimensional graphene-carbon nanotubes hybrid structure: molecular dynamics simulation [J]. CIESC Journal, 2020, 71(4): 1822-1827. |
[14] | Yixin MA, Yu JIN, Hu ZHANG, Xian WANG, Guihua TANG. Experimental study on heat transfer performance of finned gravity heat pipe [J]. CIESC Journal, 2020, 71(2): 594-601. |
[15] | Wanqiang LIU,Fan YANG,Hua YUAN,Yuanda ZHANG,Pinggui YI,Hu ZHOU. Molecular dynamics simulation and mechanism study on thermal conductivity of alcohols [J]. CIESC Journal, 2020, 71(11): 5159-5168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||