CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2678-2687.DOI: 10.11949/0438-1157.20200237
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xiaoyu DAI(),Yuan en MA,Zhiming XU,Linzhou ZHANG,Suoqi ZHAO(),Chunming XU
Received:
2020-03-09
Revised:
2020-03-31
Online:
2020-06-05
Published:
2020-06-05
Contact:
Suoqi ZHAO
通讯作者:
赵锁奇
作者简介:
代晓玉(1994—),女,博士研究生,CLC Number:
Xiaoyu DAI, Yuan en MA, Zhiming XU, Linzhou ZHANG, Suoqi ZHAO, Chunming XU. Effects of composition distribution of catalytic slurry oils on optical texture of mesophase pitch[J]. CIESC Journal, 2020, 71(6): 2678-2687.
代晓玉, 马远恩, 许志明, 张霖宙, 赵锁奇, 徐春明. 催化裂化油浆组成分布对中间相沥青光学织构的影响[J]. 化工学报, 2020, 71(6): 2678-2687.
Add to citation manager EndNote|Ris|BibTeX
Properties | SLO-LH | SLO-YN | SLO-SH |
---|---|---|---|
carbon residue/%(mass) | 8.16 | 10.83 | 16.08 |
ash/%(mass) | 0.16 | 0.23 | 0.32 |
density/(cm3/g) | 0.99 | 1.07 | 1.09 |
SARA/%(mass) | |||
saturate | 31.29 | 14.41 | 14.64 |
aromatic | 45.49 | 71.78 | 59.39 |
resin | 17.85 | 9.54 | 16.17 |
asphaltene | 1.16 | 1.55 | 2.69 |
element/%(mass) | |||
C | 88.97 | 91.56 | 91.17 |
H | 10.67 | 7.89 | 7.81 |
O | 0.59 | 0.40 | 0.45 |
N | 0.33 | 0.15 | 0.48 |
S | 0.30 | 0.71 | 0.51 |
metal content/(μg/g) | |||
Ni | 5.20 | 2.40 | 11.30 |
V | <0.1 | 4.60 | 0.60 |
Al | 76.00 | 279.00 | 638.00 |
Ca | 3.10 | 3.30 | 12.60 |
Fe | 14.30 | 6.80 | 34.50 |
Na | 4.50 | 2.40 | 52.10 |
Table 1 Basic properties of three slurry oils
Properties | SLO-LH | SLO-YN | SLO-SH |
---|---|---|---|
carbon residue/%(mass) | 8.16 | 10.83 | 16.08 |
ash/%(mass) | 0.16 | 0.23 | 0.32 |
density/(cm3/g) | 0.99 | 1.07 | 1.09 |
SARA/%(mass) | |||
saturate | 31.29 | 14.41 | 14.64 |
aromatic | 45.49 | 71.78 | 59.39 |
resin | 17.85 | 9.54 | 16.17 |
asphaltene | 1.16 | 1.55 | 2.69 |
element/%(mass) | |||
C | 88.97 | 91.56 | 91.17 |
H | 10.67 | 7.89 | 7.81 |
O | 0.59 | 0.40 | 0.45 |
N | 0.33 | 0.15 | 0.48 |
S | 0.30 | 0.71 | 0.51 |
metal content/(μg/g) | |||
Ni | 5.20 | 2.40 | 11.30 |
V | <0.1 | 4.60 | 0.60 |
Al | 76.00 | 279.00 | 638.00 |
Ca | 3.10 | 3.30 | 12.60 |
Fe | 14.30 | 6.80 | 34.50 |
Na | 4.50 | 2.40 | 52.10 |
Type | Size/shape | Index(OTI) |
---|---|---|
mosaic | <10 μm | 1 |
small domain | 10—60 μm | 5 |
domain | >60 μm | 50 |
flow domain | >60 μm long,>10 μm wide | 100 |
Table 2 Nomenclature and optical texture index of microstructure types of mesophase asphalt and needle coke
Type | Size/shape | Index(OTI) |
---|---|---|
mosaic | <10 μm | 1 |
small domain | 10—60 μm | 5 |
domain | >60 μm | 50 |
flow domain | >60 μm long,>10 μm wide | 100 |
Sample | Mn | Mw | Dispersion coefficient |
---|---|---|---|
SLO-LH | 574 | 2188.66 | 3.81 |
SLO-YN | 263 | 333.74 | 1.27 |
SLO-SH | 276 | 384.22 | 1.39 |
Table 3 Molecular weight of catalytic slurry
Sample | Mn | Mw | Dispersion coefficient |
---|---|---|---|
SLO-LH | 574 | 2188.66 | 3.81 |
SLO-YN | 263 | 333.74 | 1.27 |
SLO-SH | 276 | 384.22 | 1.39 |
Sample | ha | hα | hβ | hγ | fA | HAU/CA | CT | HT | σ |
---|---|---|---|---|---|---|---|---|---|
SLO-LH | 0.10 | 0.12 | 0.65 | 0.13 | 0.35 | 0.65 | 42.52 | 60.76 | 0.36 |
SLO-YN | 0.31 | 0.31 | 0.30 | 0.08 | 0.64 | 0.75 | 20.05 | 20.59 | 0.33 |
SLO-SH | 0.31 | 0.28 | 0.33 | 0.08 | 0.64 | 0.72 | 20.95 | 21.39 | 0.31 |
Sample | CA | RT | RA | RN | CN | CS | CP | L | n |
SLO-LH | 15.06 | 5.61 | 3.27 | 2.34 | 9.37 | 27.46 | 18.09 | 6.69 | 0.77 |
SLO-YN | 12.89 | 4.31 | 2.72 | 1.59 | 6.37 | 7.17 | 0.79 | 1.39 | 1.06 |
SLO-SH | 13.50 | 4.51 | 2.87 | 1.63 | 6.54 | 7.45 | 0.92 | 1.58 | 0.97 |
Table 4 1H NMR data of three kinds of slurry oil
Sample | ha | hα | hβ | hγ | fA | HAU/CA | CT | HT | σ |
---|---|---|---|---|---|---|---|---|---|
SLO-LH | 0.10 | 0.12 | 0.65 | 0.13 | 0.35 | 0.65 | 42.52 | 60.76 | 0.36 |
SLO-YN | 0.31 | 0.31 | 0.30 | 0.08 | 0.64 | 0.75 | 20.05 | 20.59 | 0.33 |
SLO-SH | 0.31 | 0.28 | 0.33 | 0.08 | 0.64 | 0.72 | 20.95 | 21.39 | 0.31 |
Sample | CA | RT | RA | RN | CN | CS | CP | L | n |
SLO-LH | 15.06 | 5.61 | 3.27 | 2.34 | 9.37 | 27.46 | 18.09 | 6.69 | 0.77 |
SLO-YN | 12.89 | 4.31 | 2.72 | 1.59 | 6.37 | 7.17 | 0.79 | 1.39 | 1.06 |
SLO-SH | 13.50 | 4.51 | 2.87 | 1.63 | 6.54 | 7.45 | 0.92 | 1.58 | 0.97 |
1 | 史权, 张立. 催化裂化油浆及其窄馏分芳烃组成分析 [J]. 石油学报, 2000, 16(2): 90-94. |
Shi Q, Zhang L. Analysis of aromatic types in FCC slurry oils and their separated narrow fractions [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2000, 16 (2): 90-94. | |
2 | Song X, Liu D, Lou B, et al. Removal of catalyst particles from fluid catalytic cracking slurry oil by the simultaneous addition of a flocculants and a weighting agent[J]. Chemical Engineering Research and Design, 2018, 132: 686-696. |
3 | Wang G, Eser S. Molecular composition of the high-boiling components of needle coke feedstocks and mesophase development[J]. Energy & Fuels, 2007, 21(6): 3563-3572. |
4 | Lin C, Wang J, Chen S, et al. Thermal treatment of fluid catalytic cracking slurry oil: determination of the thermal stability and its correlation with the quality of derived cokes[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 406-414. |
5 | Mochida I, Nakamo S, Oyama T, et al. Puffing and CTE of carbon rods prepared from hydrodesulfurized petroleum needle coke[J]. Carbon, 1988, 26(5): 751-754. |
6 | Wincek R T, Abrahamson J P, Eser S. Hydrodesulfurization of fluid catalytic cracking decant oils in a laboratory flow reactor and effect of hydrodesulfurization on subsequent coking[J]. Energy & Fuels, 2016, 30(8): 6281-6289. |
7 | Eser S, Wang G. A laboratory study of a pretreatment approach to accommodate high-sulfur FCC decant oils as feedstocks for commercial needle coke[J]. Energy & Fuels, 2007, 21(6): 3573-3582. |
8 | Filley R M, Eser S. Analysis of hydrocarbons and sulfur compounds in two FCC decant oils and their carbonization products[J]. Energy & Fuels, 1997, 11(3): 623-630. |
9 | Zhao S, Sparks B D, Kotlyar L S, et al. Reactivity of sulphur species in bitumen pitch and residua during fluid coking and hydrocracking[J]. Petroleum Science and Technology, 2002, 20(9/10): 1071-1085. |
10 | Taylor G H, Pennock G M, Gerald J D F, et al. Influence of QI on mesophase structure[J]. Carbon, 1993, 31(2): 341-354. |
11 | Eser S, Jenkins R G. Carbonization of petroleum feedstocks(Ⅱ): Chemical constitution of feedstock asphaltenes and mesophase development[J]. Carbon, 1989, 27(6): 889-897. |
12 | Zhu Y, Zhao C, Xu Y, et al. Preparation and characterization of coal pitch-based needle coke (I): The effects of aromatic index (fa) in refined coal pitch[J]. Energy & Fuels, 2019, 33(4): 3456-3464. |
13 | 刘春林, 凌立成, 刘朗, 等. 大港常压渣油超临界萃取馏分制备中间相沥青的研究[J]. 石油学报(石油加工), 2002, 18(2): 54-58. |
Liu C L, Ling L C, Liu L, et al. Mesophase pitch prepared by supercritical fluid extraction from Dagang petroleum residue [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2002, 18(2): 54-58. | |
14 | Martı́nez-Escandell M, Torregrosa P, Marsh H, et al. Pyrolysis of petroleum residues(I): Yields and product analyses[J]. Carbon, 1999, 37(10): 1567-1582. |
15 | Fleurot O, Edie D. Steady and transient rheological behavior of mesophase pitches[J]. Journal of Rheology, 1998, 42: 781-793. |
16 | Khandare P M, Zondlo J W, Stansberry P B, et al. Rheological investigations of pitch material(Ⅱ): Viscosity measurement of A240 and ARA-24 pitches using a high-temperature high-pressure rheometer[J]. Carbon, 2000, 38(6): 889-897. |
17 | Ramjee S, Rand B, Focke W W. Low shear rheological behaviour of two-phase mesophase pitch[J]. Carbon, 2015, 82: 368-380. |
18 | Weishauptová Z, Medek J, Rada M. Relation between texture and rheological properties of mesophase pitch[J]. Fuel, 1994, 73(2): 177-182. |
19 | Eser S, Wang G, Clemons J. constitution Molecular, reactivity carbonization, and mesophase development from FCC decant oil and its derivatives[M]// Heavy Hydrocarbon Resources. Washington, DC: American Chemical Society, 2005: 95-111. |
20 | Mochida I, Korai Y, Fujitsu H, et al. Evaluation of several petroleum residues as the needle coke feedstock using a tube bomb[J]. Carbon, 1987, 25(2): 259-264. |
21 | Yuan G, Jin Z, Zuo X, et al. Effect of carbonaceous precursors on the structure of mesophase pitches and their derived cokes[J]. Energy & Fuels, 2018, 32(8): 8329-8339. |
22 | Mochida I, Qing F Y, Korai Y, et al. Carbonization in the tube bomb leading to needle coke (Ⅲ): Carbonization properties of several coal-tar pitches[J]. Carbon, 1989, 27(3): 375-380. |
23 | Kakuta M, Tanaka H, Sato J, et al. A new calcining technology for manufacturing of coke with lower thermal expansion coefficient [J]. Carbon, 1981, 19(5): 347-352. |
24 | Eser S, Jenkins R G. Carbonization of petroleum feedstocks (Ⅰ): Relationships between chemical constitution of the feedstocks and mesophase development[J]. Carbon, 1989, 27(6): 877-887. |
25 | Tekinalp H L, Cervo E G, Fathollahi B, et al. The effect of molecular composition and structure on the development of porosity in pitch-based activated carbon fibers[J]. Carbon, 2013, 52: 267-277. |
26 | 丁宗禹. 扩大针状焦的原料[J]. 石油炼制与化工, 1988, (9): 30-35. |
Ding Z Y. Extending the feedstocks for needle coke production[J]. Petroleum Processing and Petrochemicals, 1988, (9): 30-35. | |
27 | Sanada Y, Furuta T, Kimura H, et al. Formation of anisotropic mesophase from various carbonaceous materials in early stages of carbonization [J]. Fuel, 1973, 52(2): 143-148. |
28 | Ragan S, Marsh H. Carbonization and liquid-crystal (mesophase) development(22): Micro-strength and optical textures of cokes from coal-pitch co-carbonizations[J]. Fuel, 1981, 60(6): 522-528. |
29 | 杜勇, 刘春法, 单长春, 等. 针状焦偏光显微分析方法及影响因素探讨[J]. 炭素技术, 2007, (6): 6-8. |
Du Y, Liu C F, Shan C C, et al. Microstructure of needle coke by polarized light microscope and discussion on affecting factors [J]. Carbon Technology, 2007, (6): 6-8. | |
30 | Zhang D, Zhang L, Fang X, et al. Enhancement of mesocarbon microbead (MCMB) preparation through supercritical fluid extraction and fractionation[J]. Fuel, 2019, 237: 753-762. |
31 | 李春霞, 徐泽进, 乔曼, 等. 催化裂化油浆超临界萃取组分热缩聚生成中间相沥青的定量研究 [J]. 石油学报(石油加工), 2015, (1): 145-152. |
Li C X, Xu Z J, Qiao M, et al. Quantitative analysis of mesophase development upon heating of the supercritical fluid extraction of FCC slurry [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2015, (1): 145-152. | |
32 | Wang G. Molecular composition of needle coke feedstocks and mesophase development during carbonization [D]. The Pennsylvania State: The Pennsylvania State University, 2005. |
33 | Zhang D, Zhang L, Yu Y, et al. Mesocarbon microbead production from fluid catalytic cracking slurry oil: improving performance through supercritical fluid extraction [J]. Energy & Fuels, 2018, 32(12): 12477-12485. |
34 | Mochida I, Korai Y, Oyama T. Semi-quantitative correlation between optical anisotropy and CTE of needle-like coke grains[J]. Carbon, 1987, 25(2): 273-278. |
[1] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[5] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[6] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[7] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[8] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[9] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[10] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[11] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[12] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[13] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[14] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[15] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||