CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5706-5714.DOI: 10.11949/0438-1157.20200402
• Process system engineering • Previous Articles Next Articles
PING Xiaojing(),ZHAO Shunyi,LUAN Xiaoli(),LIU Fei
Received:
2020-04-16
Revised:
2020-05-25
Online:
2020-12-05
Published:
2020-12-05
Contact:
LUAN Xiaoli
通讯作者:
栾小丽
作者简介:
平晓静(1997—),女,硕士研究生,基金资助:
CLC Number:
PING Xiaojing,ZHAO Shunyi,LUAN Xiaoli,LIU Fei. Modeling of energy consumption in organosilicon monomer fractionation process based on transfer learning[J]. CIESC Journal, 2020, 71(12): 5706-5714.
平晓静,赵顺毅,栾小丽,刘飞. 基于迁移学习的有机硅单体分馏过程能耗建模[J]. 化工学报, 2020, 71(12): 5706-5714.
Add to citation manager EndNote|Ris|BibTeX
回归算法 | 性能指标 | |
---|---|---|
RMSE/% | MAPE/% | |
PLS | 3.6399 | 0.4146 |
BP | 4.0994 | 0.5689 |
RBF | 6.2147 | 0.6185 |
Table 1 RMSE and MAPE of PLS, BP and RBF
回归算法 | 性能指标 | |
---|---|---|
RMSE/% | MAPE/% | |
PLS | 3.6399 | 0.4146 |
BP | 4.0994 | 0.5689 |
RBF | 6.2147 | 0.6185 |
三甲塔样本比例 | MMD距离 | |
---|---|---|
迁移算法前 | 迁移算法后 | |
0.05 0.1 | 0.9480 0.9855 | 0.3494 0.3817 |
0.2 | 0.9730 | 0.3512 |
0.3 0.4 0.5 0.6 0.7 0.8 | 1.0025 1.0071 0.9951 0.9935 0.9963 0.9874 | 0.4087 0.2561 0.2337 0.2248 0.2199 0.4398 |
Table 2 MMD distance of source and target domains
三甲塔样本比例 | MMD距离 | |
---|---|---|
迁移算法前 | 迁移算法后 | |
0.05 0.1 | 0.9480 0.9855 | 0.3494 0.3817 |
0.2 | 0.9730 | 0.3512 |
0.3 0.4 0.5 0.6 0.7 0.8 | 1.0025 1.0071 0.9951 0.9935 0.9963 0.9874 | 0.4087 0.2561 0.2337 0.2248 0.2199 0.4398 |
1 | Eduok U, Faye O, Szpunar J. Recent developments and applications of protective silicone coatings: a review of PDMS functional materials[J]. Progress in Organic Coatings, 2017, 111: 124-163. |
2 | Zhang S. Application of mathematical modeling in optimization of synthesis process parameters of methylchlorosilane[J]. Journal of Photonic Materials and Technology, 2018, 4(2): 49-54. |
3 | Luo W, Wang G, Wang J, et al. Effect and role of Al addition in the direct synthesis reaction of methylchlorosilane monomer[J]. Journal of Chemical Engineering of Chinese Universities, 2005, 19(6): 803-807. |
4 | 傅积赉. 对直接法合成甲基氯硅烷生产工艺复杂性的认识与建议[J]. 有机硅材料, 2004, 18(1): 1-4. |
Fu J L. Acquaintance & suggestions on complexity of production technology on direct synthesis of methylchlorosilane[J]. Silicone Material, 2004, 18(1): 1-4. | |
5 | Hitsov I, de Sitter K, Dotremont C, et al. Economic modelling and model-based process optimization of membrane distillation[J]. Desalination, 2018, 436: 125-143. |
6 | Eleiwi F, Ghaffour N, Alsaadi A S, et al. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process[J]. Desalination, 2016, 384: 1-11. |
7 | Ruiz A, Blanco C, Ozkan L. Modeling of reactive batch distillation processes for control[J]. Computers and Chemical Engineering, 2019, 121: 86-98. |
8 | 李凤莲, 任瑞平, 邹雪梅. 化工精馏高效节能技术开发及应用[J]. 化工管理, 2014, (18): 162. |
Li F L, Ren R P, Zou X M. Development and application of high efficiency and energy saving technology for chemical distillation[J]. Chemical Enterprise Management, 2014, (18): 162. | |
9 | 何小阳, 李健, 闵力, 等. 精馏塔的机理-神经网络混合建模[J]. 控制工程, 2009, 16(2): 94-96. |
He X Y, Li J, Min L, et al. Modeling of distillation column based on hybrid neural network and prior knowledge[J]. Control Engineering of China, 2009, 16(2): 94-96. | |
10 | 于丙芹, 张贝克, 孙军, 等. 精馏过程动态仿真建模[J]. 计算机与应用化学, 2011, 28(9): 1219-1223. |
Yu B Q, Zhang B K, Sun J, et al. Dynamic simulation and modeling of distillation process[J]. Computers and Applied Chemistry, 2011, 28(9): 1219-1223. | |
11 | Pino-Mejías R, Pérez-Fargallo A, Rubio-Bellido C, et al. Comparison of linear regression and artificial neural networks models to predict heating and cooling energy demand, energy consumption and CO2 emissions[J]. Energy, 2017, 118: 24-36. |
12 | Wang Z, Shao C, Zhu L. Soft-sensing modeling and intelligent optimal control strategy for distillation yield rate of atmospheric distillation oil refining process[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1113-1124. |
13 | Brahim A, Abderafi S, Bounahmidi T. Optimization of the distillation column of petroleum fractions using ANN method[C]//2018 IEEE 6th International Renewable and Sustainable Energy Conference (IRSEC), 2018: 1-6. |
14 | Ibrahim D, Jobson M, Li J, et al. Optimization-based design of crude oil distillation units using surrogate column models and a support vector machine[J]. Chemical Engineering Research and Design, 2018, 134: 212-225. |
15 | Osuolale F N, Zhang J. Energy efficiency optimisation for distillation column using artificial neural network models[J]. Energy, 2016, 106: 562-578. |
16 | Osuolale F, Zhang J. Exergetic Optimisation of Atmospheric and Vacuum Distillation System based on Bootstrap Aggregated Neural Network Models[M]. Switzerland: Springer, Cham, 2018: 1033-1046. |
17 | Chan L, Chen J. Economic model predictive control of distillation startup based on probabilistic approach[J]. Chemical Engineering Science, 2018, 186: 26-35. |
18 | Pan S, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359. |
19 | Wang X, Ren J, Liu S. Distribution adaptation and manifold alignment for complex processes fault diagnosis[J]. Knowledge-Based Systems, 2018, 156: 100-112. |
20 | Yang C, Chen B, Wang Z, et al. Transfer learning soft sensor for product quality prediction in multi-grade processes[C]//2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS). 2019: 1148-1153. |
21 | 刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收率PSO-LS-SVM建模[J]. 化工学报, 2016, 67(5): 1982-1988. |
Liu J, Shao C, Zhu L. Modeling of cracking furnace yields with PSO-LS-SVM based on operating condition classification by transfer learning[J]. CIESC Journal, 2016, 67(5): 1982-1988. | |
22 | 周书恒, 杜文莉. 基于迁移学习的裂解炉产率建模[J]. 化工学报, 2014, 65(12): 4921-4928. |
Zhou S H, Du W L. Modeling of ethylene cracking furnace yields based on transfer learning[J]. CIESC Journal, 2014, 65(12): 4921-4928. | |
23 | Han T, Liu C, Yang W, et al. Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application[J]. ISA Transactions, 2020, 97: 269-281. |
24 | Lu J, Yao Y, Gao F. Model migration for development of a new process model[J]. Industrial & Engineering Chemistry Research, 2009, 48(21): 9603-9610. |
25 | Lu J, Gao F. Process modeling based on process similarity[J]. Industrial & Engineering Chemistry Research, 2008, 47(6): 1967-1974. |
26 | 孙建阳, 孔令启, 张传国, 等. 国内甲基氯硅烷分离技术现状及改进方法[J].有机硅材料, 2015, 29(1): 47-51. |
Sun J Y, Kong L Q, Zhang C G, et al. Status of separation technology of methyl chlorosilane and its improvements in China[J]. Silicone Material, 2015, 29(1): 47-51. | |
27 | 段继海, 王文建, 范军领, 等. 有机硅单体分离流程的模拟与优化[J]. 化学工程, 2012, 40(8): 69-73. |
Duan J H, Wang W J, Fan J L, et al. Simulation and optimization of organosilicon monomer separation processes[J]. Chemical Engineering(China), 2012, 40(8): 69-73. | |
28 | 高维平, 杨莹, 刘学线, 等. 化工精馏高效节能技术开发及应用[J]. 计算机与应用化学, 2008, 25(12): 1531-1536. |
Gao W P, Yang Y, Liu X X, et al. Development and application of high efficiency energy-saving distillation technology[J]. Computers and Applied Chemistry, 2008, 25(12): 1531-1536. | |
29 | 李英劼. 化工生产中降低精馏技术能耗的思路[J]. 石油和化工设备, 2011, 14(1): 58-60. |
Li Y J. Chemical Engineering produces inside lowers the way of thinking that tower consume[J]. Petro & Chemical Equipment, 2011, 14(1): 58-60. | |
30 | 黄克谨, 钱积新, 孙优贤, 等. 一种改进的多元精馏塔动态模型[J]. 化工学报, 1992, 43(4): 482-488. |
Huang K J, Qian J X, Sun Y X, et al. An improved dynamic model of multicomponent distillation column[J]. Journal of Chemical Industry and Engineering(China), 1992, 43(4): 482-488. | |
31 | Hong J, Yin J, Huang Y, et al. TrSVM: a transfer learning algorithm using domain similarity[J]. Journal of Computer Research and Development, 2011, 48(10): 1823-1830. |
32 | 刘强, 秦泗钊. 过程工业大数据建模研究展望[J]. 自动化学报, 2016, 42(2): 3-13. |
Liu Q, Qin S Z. Perspectives on big data modeling of process industries[J]. Acta Automatica Sinica, 2016, 42(2): 3-13. | |
33 | Alma Ö. Comparison of robust regression methods in linear regression [J]. International Journal of Contemporary Mathematical Sciences, 2011, 6(9): 409-421. |
34 | Borgwardt K, Gretton A, Rasch M, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): 49-57. |
35 | Pardoe D, Stone P. Boosting for regression transfer[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel, 2010: 863-870. |
36 | Khan M, Heisterkamp D. Adapting instance weights for unsupervised domain adaptation using quadratic mutual information and subspace learning[C]//2016 IEEE 23rd International Conference on Pattern Recognition (ICPR). 2016: 1560-1565. |
37 | Dai W, Yang Q, Xue G, et al. Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine Learning. Corvalis Oregon. USA, 2007: 193-200. |
38 | Sarstedt M, Ringle C, Hair J. Partial Least Squares Structural Equation Modeling[M]. Springer International Publishing, 2017. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[6] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[7] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[9] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[10] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[11] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[12] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[13] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[14] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[15] | Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide [J]. CIESC Journal, 2023, 74(4): 1607-1618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||