CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 3933-3949.DOI: 10.11949/0438-1157.20200439
• Reviews and monographs • Previous Articles Next Articles
Xiaojia XU(),Yongzhen WU(
),Weihong ZHU
Received:
2020-04-29
Revised:
2020-06-24
Online:
2020-09-05
Published:
2020-09-05
Contact:
Yongzhen WU
通讯作者:
吴永真
作者简介:
许晓佳(1995—),女,博士研究生,基金资助:
CLC Number:
Xiaojia XU, Yongzhen WU, Weihong ZHU. Research progress on stability enhancement of CsPbX3 perovskite and photovoltaic devices[J]. CIESC Journal, 2020, 71(9): 3933-3949.
许晓佳, 吴永真, 朱为宏. CsPbX3钙钛矿材料与光伏器件稳定性强化研究进展[J]. 化工学报, 2020, 71(9): 3933-3949.
1 | Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13(4): 1764-1769. |
2 | Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341-344. |
3 | Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths >175 m in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970. |
4 | Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
5 | 陈超, 杨修春, 刘巍. 有机-无机杂化钙钛矿太阳能电池的研究进展[J]. 化工学报, 2017, 68(3): 811-820. |
Chen C, Yang X C, Liu W. Research progress of hybrid organic-inorganic perovskite solar cells[J]. CIESC Journal, 2017, 68(3): 811-820. | |
6 | Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466. |
7 | Wang Y B, Han L Y. Research activities on perovskite solar cells in China[J]. Science China Chemistry, 2019, 62(7): 822-828. |
8 | Nenon D P, Christians J A, Wheeler L M, et al. Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution[J]. Energy & Environmental Science, 2016, 9(6): 2072-2082. |
9 | Saliba M, Matsui T, Seo J, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency[J]. Energy & Environmental Science, 2016, 9(6): 1989-1997. |
10 | Mcmeekin D P, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells[J]. Science, 2016, 351(6269): 151-155. |
11 | Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells[J]. The Journal of Physical Chemistry Letters, 2015, 6(13): 2452-2456. |
12 | Eperon G E, Paternò G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(39): 19688-19695. |
13 | Duan J L, Wang Y D, Yang X Y, et al. Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells[J]. Angewandte Chemie International Edition, 2020, 59(11): 4391-4395. |
14 | Wang Y, Liu X M, Zhang T Y, et al. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant?[J]. Angewandte Chemie International Edition, 2019, 58(46): 16691-16696. |
15 | Marronnier A, Roma G, Boyer-Richard S, et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells[J]. ACS Nano, 2018, 12(4): 3477-3486. |
16 | Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistry, 2013, 52(15): 9019-9038. |
17 | Steele J A, Jin H, Dovgaliuk I, et al. Thermal unequilibrium of strained black CsPbI3 thin films[J]. Science, 2019, 365(6454): 679. |
18 | Goldschmidt V M. Die gesetze der krystallochemie[J]. The Science of Nature - Naturwissenschaften, 1926, 14(21): 477-485. |
19 | Cheng Z Y, Lin J. Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering[J]. CrystEngComm, 2010, 12(10): 2646-2662. |
20 | Li Z, Yang M J, Park J, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials, 2016, 28(1): 284-292. |
21 | Sun J K, Huang S, Liu X Z, et al. Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires[J]. Journal of the American Chemical Society, 2018, 140(37): 11705-11715. |
22 | Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells[J]. Advanced Energy Materials, 2016, 6(8): 1502458. |
23 | Sanchez S, Christoph N, Grobety B, et al. Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing[J]. Advanced Energy Materials, 2018, 8(30): 1802060. |
24 | van der Ven A, Bechtel J S. First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions[J]. Physical Review Materials, 2018, 2(4): 045401. |
25 | Nam J K, Chai S U, Cha W, et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells[J]. Nano Letters, 2017, 17(3): 2028-2033. |
26 | Xiang S S, Li W P, Wei Y, et al. Natrium doping pushes the efficiency of carbon-based CsPbI3 perovskite solar cells to 10.7%[J]. Cell Press: iScience, 2019, 15: 156-164. |
27 | Liu F, Ding C, Zhang Y H, et al. Colloidal synthesis of air-stable alloyed CsSn1–xPbxI3 perovskite nanocrystals for use in solar cells[J]. Journal of the American Chemical Society, 2017, 139(46): 16708-16719. |
28 | Liang J, Zhao P Y, Wang C X, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. Journal of the American Chemical Society, 2017, 139(40): 14009-14012. |
29 | Yang F, Hirotani D, Kapil G, et al. All-inorganic CsPb1–xGexI2Br perovskite with enhanced phase stability and photovoltaic performance[J]. Angewandte Chemie International Edition, 2018, 57(39): 12745-12749. |
30 | Lau C F J, Deng X, Zheng J, et al. Enhanced performance via partial lead replacement with calcium for α-CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency[J]. Journal of Materials Chemistry A, 2018, 6(14): 5580-5586. |
31 | Xiang W C, Wang Z W, Kubicki D J, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells[J]. Joule, 2019, 3(1): 205-214. |
32 | Bai D L, Zhang J R, Jin Z W, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS Energy Letters, 2018, 3(4): 970-978. |
33 | Liang J, Liu Z H, Qiu L B, et al. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes[J]. Advanced Energy Materials, 2018, 8(20): 1800504. |
34 | Sun H R, Zhang J, Gan X L, et al. Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(25): 1900896. |
35 | Hu Y Q, Bai F, Liu X B, et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells[J]. ACS Energy Letters, 2017, 2(10): 2219-2227. |
36 | Jena A K, Kulkarni A, Sanehira Y, et al. Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3[J]. Chemistry of Materials, 2018, 30(19): 6668-6674. |
37 | Liu C, Li W Z, Li H Y, et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(7): 1803572. |
38 | Fu Y, Rea M T, Chen J, et al. Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films[J]. Chemistry of Materials, 2017, 29(19): 8385-8394. |
39 | Liu C, Yang Y, Xia X, et al. Soft template-controlled growth of high-quality CsPbI3 films for efficient and stable solar cells[J]. Advanced Energy Materials, 2020, 10(9): 1903751. |
40 | Li B, Zhang Y N, Fu L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells[J]. Nature Communications, 2018, 9(1): 1076. |
41 | Jeong B, Han H, Choi Y J, et al. All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes[J]. Advanced Functional Materials, 2018, 28(16): 1706401. |
42 | Wang Q, Zheng X P, Deng Y H, et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films[J]. Joule, 2017, 1(2): 371-382. |
43 | Xu X J, Zhang H, Li E P, et al. Electron-enriched thione enables strong Pb-S interaction for stabilizing high quality CsPbI3 perovskite films with low-temperature processing[J]. Chemical Science, 2020, 11(12): 3132-3140. |
44 | Wang J, Zhang J, Zhou Y Z, et al. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base[J]. Nature Communications, 2020, 11(1): 177. |
45 | Meng W, Hou Y, Karl A, et al. Visualizing and suppressing nonradiative losses in high open-circuit voltage n-i-p-type CsPbI3 perovskite solar cells[J]. ACS Energy Letters, 2020, 5(1): 271-279. |
46 | Luo P F, Xia W, Zhou S W, et al. Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(18): 3603-3608. |
47 | Zhao B Y, Jin S F, Huang S, et al. Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics[J]. Journal of the American Chemical Society, 2018, 140(37): 11716-11725. |
48 | Wang K, Jin Z W, Liang L, et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%[J]. Nature Communications, 2018, 9(1): 4544. |
49 | Wang Y, Zhang T Y, Kan M, et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations[J]. Joule, 2018, 2(10): 2065-2075. |
50 | Wang Y, Zhang T Y, Kan M, et al. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics[J]. Journal of the American Chemical Society, 2018, 140(39): 12345-12348. |
51 | Wu T H, Wang Y B, Dai Z S, et al. Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups[J]. Advanced Materials, 2019, 31(24): 1900605. |
52 | Ke W, Spanopoulos I, Stoumpos C C, et al. Myths and reality of HPbI3 in halide perovskite solar cells[J]. Nature Communications, 2018, 9(1): 4785. |
53 | Wang Y, Dar M I, Ono L K, et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%[J]. Science, 2019, 365(6453): 591-595. |
54 | Meng H G, Shao Z P, Wang L, et al. Chemical composition and phase evolution in DMAI-derived inorganic perovskite solar cells[J]. ACS Energy Letters, 2020, 5(1): 263-270. |
55 | Swarnkar A, Marshall A R, Sanehira E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science, 2016, 354(6308): 92-95. |
56 | Sanehira E M, Marshall A R, Christians J A, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells[J]. Science Advances, 2017, 3(10): eaao4204. |
57 | Wang Q, Jin Z W, Chen D, et al. µ-Graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability[J]. Advanced Energy Materials, 2018, 8(22): 1800007. |
58 | Yuan J Y, Ling X F, Yang D, et al. Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells[J]. Joule, 2018, 2(11): 2450-2463. |
59 | Ling X F, Zhou S J, Yuan J Y, et al. 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation[J]. Advanced Energy Materials, 2019, 9(28): 1900721. |
60 | Chen K Q, Jin W, Zhang Y P, et al. High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering[J]. Journal of the American Chemical Society, 2020, 142(8): 3775-3783. |
61 | Liao J F, Rao H S, Chen B X, et al. Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(5): 2066-2072. |
62 | Zhang T Y, Dar M I, Li G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells[J]. Science Advances, 2017, 3(9): e1700841. |
63 | Jiang Y Z, Yuan J, Ni Y X, et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics[J]. Joule, 2018, 2(7): 1356-1368. |
64 | Li F M, Pei Y H, Xiao F, et al. Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites[J]. Nanoscale, 2018, 10(14): 6318-6322. |
65 | Wang K, Li Z Z, Zhou F G, et al. Ruddlesden-popper 2D component to stabilize γ-CsPbI3 perovskite phase for stable and efficient photovoltaics[J]. Advanced Energy Materials, 2019, 9(42): 1902529. |
66 | Dayan S A, Cohen B, Aharon S, et al. Enhancing stability and photostability of CsPbI3 by reducing its dimensionality[J]. Chemistry of Materials, 2018, 30(21): 8017-8024. |
67 |
Zheng Y F, Yang X Y, Su R, et al. High-performance CsPbIxBr3–x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation[J]. Advanced Functional Materials, 2020, doi:10.1002/adfm.202000457.
DOI |
68 | Wang P Y, Zhang X W, Zhou Y Q, et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells[J]. Nature Communications, 2018, 9(1): 2225. |
69 | Chen W J, Chen H Y, Xu G Y, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells[J]. Joule, 2018, 3(1): 304-317. |
70 | Shao Z P, Wang Z W, Li Z P, et al. A scalable methylamine gas healing strategy for high-efficiency inorganic perovskite solar cells[J]. Angewandte Chemie International Edition, 2019, 58(17): 5587-5591. |
71 | Lau C F J, Wang Z, Sakai N, et al. Fabrication of efficient and stable CsPbI3 perovskite solar cells through cation exchange process[J]. Advanced Energy Materials, 2019, 9(36): 1901685. |
72 | Zhang J H, Wang Z W, Mishra A, et al. Intermediate phase enhances inorganic perovskite and metal oxide interface for efficient photovoltaics[J]. Joule, 2020, 4(1): 222-234. |
73 | Xiao Q, Tian J J, Xue Q F, et al. Dopant-free squaraine-based polymeric hole-transporting materials with comprehensive passivation effects for efficient all-inorganic perovskite solar cells[J]. Angewandte Chemie International Edition, 2019, 58(49): 17724-17730. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[5] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[8] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[9] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[10] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[11] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[12] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[13] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[14] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[15] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 169
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 582
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||