CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 3919-3932.DOI: 10.11949/0438-1157.20200438
• Reviews and monographs • Previous Articles Next Articles
Liangyi DING(),Ganggang CHONG,Jiang PAN,Jianhe XU()
Received:
2020-04-29
Revised:
2020-05-19
Online:
2020-09-05
Published:
2020-09-05
Contact:
Jianhe XU
通讯作者:
许建和
作者简介:
丁良怡(1996—),女,硕士研究生,基金资助:
CLC Number:
Liangyi DING, Ganggang CHONG, Jiang PAN, Jianhe XU. Advances in biosynthesis of fatty acids to ω-hydroxyacids and ω-amino acids[J]. CIESC Journal, 2020, 71(9): 3919-3932.
丁良怡, 种刚刚, 潘江, 许建和. 生物转化脂肪酸合成ω-羟基酸和ω-氨基酸研究进展[J]. 化工学报, 2020, 71(9): 3919-3932.
Add to citation manager EndNote|Ris|BibTeX
1 | Biermann U, Friedt W, Lang S, et al. New syntheses with oils and fats as renewable raw materials for the chemical industry[J]. Angew. Chem. Int. Ed., 2000, 39(13): 2206-2224. |
2 | Biermann U, Bornscheuer U, Meier M A, et al. Oils and fats as renewable raw materials in chemistry[J]. Angew. Chem. Int. Ed., 2011, 50(17): 3854-3871. |
3 | Seo J H, Lee S M, Lee J, et al. Adding value to plant oils and fatty acids: biological transformation of fatty acids into α-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids[J]. J. Biotechnol., 2015, 216: 158-166. |
4 | Metzger J O, Bornscheuer U. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification[J]. Appl. Microbiol. Biotechnol., 2006, 71(1): 13-22. |
5 | Köckritz A, Martin A. Synthesis of azelaic acid from vegetable oil-based feedstocks[J]. Eur. J. Lipid Sci. Technol., 2011, 113(1): 83-91. |
6 | Scrimgeour C. Chemistry of fatty acids[M]//Shahidi F. Bailey􀆳s Industrial Oil and Fat Products. 6th ed. Scotland: John Wiley & Sons, Inc., 2005: 1-43. |
7 | Rus A Z. Polymers from renewable materials[J]. Sci. Prog., 2010, 93(3): 285-300. |
8 | Chung H, Yang J E, Ha J Y, et al. Bio-based production of monomers and polymers by metabolically engineered microorganisms[J]. Curr. Opin. Biotechnol., 2015, 36: 73-84. |
9 | Richter M, Boldescu V, Graf D, et al. Synthesis, biological evaluation, and molecular docking of combretastatin and colchicine derivatives and their hCE1-activated prodrugs as antiviral agents[J]. ChemMedChem, 2019, 14(4): 469-483. |
10 | Cao Y, Zhang X. Production of long-chain hydroxy fatty acids by microbial conversion[J]. Appl. Microbiol. Biotechnol., 2013, 97(8): 3323-3331. |
11 | Hou C. Production of hydroxy fatty acids by biocatalysis[M]//Knothe J, Derksen J T P. Recent Developments in the Synthesis of Fatty Acid Derivatives. Champaign, Illinois: AOCS Press, 1999: 213-226. |
12 | Kim S K, Park Y C. Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli[J]. Appl. Microbiol. Biotechnol., 2019, 103(1): 191-199. |
13 | Otte K B, Kirtz M, Nestl B M, et al. Synthesis of 9-oxononanoic acid, a precursor for biopolymers[J]. ChemSusChem, 2013, 6(11): 2149-2156. |
14 | Song J W, Jeon E Y, Song D H, et al. Multistep enzymatic synthesis of long-chain α,ω-dicarboxylic and ω-hydroxycarboxylic acids from renewable fatty acids and plant oils[J]. Angew. Chem. Int. Ed., 2013, 52(9): 2534-2537. |
15 | Koppireddi S, Seo J H, Jeon E Y, et al. Combined biocatalytic and chemical transformations of oleic acid to ω-hydroxynonanoic acid and α,ω-nonanedioic acid[J]. Adv. Synth. Catal., 2016, 358(19): 3084-3092. |
16 | Jeon E Y, Seo J H, Kang W R, et al. Simultaneous enzyme/whole-cell biotransformation of plant oils into C9 carboxylic acids[J]. ACS Catal., 2016, 6(11): 7547-7553. |
17 | Seo E J, Yeon Y J, Seo J H, et al. Enzyme/whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid[J]. Bioresour. Technol., 2018, 251: 288-294. |
18 | Jang H Y, Jeon E Y, Baek A H, et al. Production of ω-hydroxyundec-9-enoic acid and n-heptanoic acid from ricinoleic acid by recombinant Escherichia coli-based biocatalyst[J]. Process Biochem., 2014, 49(4): 617-622. |
19 | Cho Y H, Kim S J, Kim J Y, et al. Effect of PelB signal sequences on Pfe1 expression and ω-hydroxyundec-9-enoic acid biotransformation in recombinant Escherichia coli[J]. Appl. Microbiol. Biotechnol., 2018, 102(17): 7407-7416. |
20 | Qi Y K, Zheng Y C, Zhang Z J, et al. Efficient transformation of linoleic acid into 13(S)-hydroxy-9,11-(Z,E)-octadecadienoic acid using putative lipoxygenases from cyanobacteria[J]. ACS Sustainable Chem. Eng., 2020, 8: 5558-5565. |
21 | Gonzalo G, Mihovilovic M, Fraaije M. Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts[J]. ChemBioChem: Eur. J. Chem. Biol., 2010, 11: 2208-2231. |
22 | Rehdorf J, Kirschner A, Cloning Bornscheuer U., expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440[J]. Biotechnol. Lett.,2007, 29(9): 1393-1398. |
23 | Kirschner A, Altenbuchner J, Bornscheuer U T. Cloning, expression, and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli[J]. Appl. Microbiol. Biotechnol., 2007, 73(5): 1065-1072. |
24 | Yu J M, Liu Y Y, Zheng Y C, et al. Direct access to medium-chain α,ω-dicarboxylic acids by using a Baeyer-Villiger monooxygenase of abnormal regioselectivity[J]. ChemBioChem, 2018, 19(19): 2049-2054. |
25 | Jang H Y, Singha K, Kim H H, et al. Chemo-enzymatic synthesis of 11-hydroxyundecanoic acid and 1,11-undecanedioic acid from ricinoleic acid[J]. Green Chem., 2016, 18(4): 1089-1095. |
26 | Seo J H, Kim H H, Jeon E Y, et al. Engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid[J]. Sci. Rep., 2016, 6: 28223. |
27 | Song J W, Lee J H, Bornscheuer U T, et al. Microbial synthesis of medium-chain α,ω-dicarboxylic acids and ω-aminocarboxylic acids from renewable long-chain fatty acids[J]. Adv. Synth. Catal., 2014, 356(8): 1782-1788. |
28 | Dirusso C C, Black P N. Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system[J]. J. Biol. Chem., 2004, 279(48): 49563-49566. |
29 | Singh P, Sharma L, Kulothungan S R, et al. Effect of signal peptide on stability and folding of Escherichia coli thioredoxin[J]. PLoS One, 2013, 8(5): e63442. |
30 | Desbois A P, Smith V J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential[J]. Appl. Microbiol. Biotechnol., 2010, 85(6): 1629-1642. |
31 | Woo J M, Kim J W, Song J W, et al. Activation of the glutamic acid-dependent acid resistance system in Escherichia coli BL21(DE3) leads to increase of the fatty acid biotransformation activity[J]. PLoS One, 2016, 11(9): e0163265. |
32 | Schrewe M, Julsing M K, Lange K, et al. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization[J]. Biotechnol. Bioeng., 2014, 111(9): 1820-1830. |
33 | Hilker I, Gutiérrez M C, Furstoss R, et al. Preparative scale Baeyer-Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process[J]. Nat. Protocols, 2008, 3(3): 546-554. |
34 | Dirusso C C, Black P N. Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process[J]. Mol. Cell. Biochem., 1999, 192(1): 41-52. |
35 | Jeon E Y, Song J W, Cha H J, et al. Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane[J]. J. Biotechnol., 2018, 281: 161-167. |
36 | Shin J, Yu J, Park M, et al. Endocytosing Escherichia coli as a whole-cell biocatalyst of fatty acids[J]. ACS Synth. Biol., 2019, 8(5): 1055-1066. |
37 | Seo E J, Kang C W, Woo J M, et al. Multi-level engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid[J]. Metab. Eng., 2019, 54: 137-144. |
38 | Woo J M, Jeon E Y, Seo E J, et al. Improving catalytic activity of the Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the overproduction of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid[J]. Sci. Rep., 2018, 8(1): 10280-10290. |
39 | 崔书健. 了不起的尼龙家族[J]. 纺织科学研究, 2019, 170(2): 68-70. |
Cui S J. Great nylon family[J]. Text. Sci. Res., 2019, 170(2): 68-70. | |
40 | 李玉红. 维生素B12口服制剂的改进配方及用途: 102526088A[P]. 2012-07-04. |
Li Y H. Improved formula of vitamin B12 oral preparation and application: 102526088A[P]. 2012-07-04. | |
41 | 赢创工业集团股份有限公司. ω-氨基脂肪酸的生产: 103881933A[P]. 2014-06-25. |
Evonik Industries Ag. Production of omega-amino fatty acids: 103881933A[P]. 2014-06-25. | |
42 | 阿肯马法国公司. ω-氨基链烷酸的合成方法: 101663264A[P]. 2010-03-03. |
France Arkema. Method for the synthesis of omega-amino-alkanoic acids: 101663264A[P]. 2010-03-03. | |
43 | Stadler B M, Wulf C, Werner T, et al. Catalytic approaches to monomers for polymers based on renewables[J]. ACS Catal., 2019, 9(9): 8012-8067. |
44 | Hayes K S. Industrial processes for manufacturing amines[J]. Appl. Catal. A: General, 2001, 221(1): 187-195. |
45 | Groger H. Biocatalytic concepts for synthesizing amine bulk chemicals: recent approaches towards linear and cyclic aliphatic primary amines and ω-substituted derivatives thereof[J]. Appl. Microbiol. Biotechnol., 2019, 103(1): 83-95. |
46 | France Arkema. Method for synthesising omega-amino-alkanoic acids or the esters thereof from natural fatty acids: WO2010004219A2[P]. 2010-01-14. |
47 | Louis K, Beauchene E, Vivier L, et al. Reductive amination of aldehyde ester from vegetable oils to produce amino ester in the presence of anhydrous ammonia[J]. Chemistry Select, 2016, 1(9): 2004-2008. |
48 | Ahsan M M, Jeon H, Nadarajan S P, et al. Biosynthesis of the nylon 12 monomer, ω-aminododecanoic acid with novel CYP153A, AlkJ, and ω-TA enzymes[J]. Biotechnol. J., 2018, 13(4): e1700562. |
49 | Sattler J H, Fuchs M, Mutti F G, et al. Introducing an in situ capping strategy in systems biocatalysis to access 6-aminohexanoic acid[J]. Angew. Chem. Int. Ed., 2014, 53(51): 14153-14157. |
50 | Bowen C H, Bonin J, Kogler A, et al. Engineering Escherichia coli for conversion of glucose to medium-chain ω-hydroxy fatty acids and α,ω-dicarboxylic acids[J]. ACS Synth. Biol., 2016, 5(3): 200-206. |
51 | Lee D S, Song J W, Voß M, et al. Enzyme cascade reactions for the biosynthesis of long chain aliphatic amines from renewable fatty acids[J]. Adv. Synth. Catal., 2019, 361(6): 1359-1367. |
52 | Sung S, Jeon H, Sarak S, et al. Parallel anti-sense two-step cascade for alcohol amination leading to ω-amino fatty acids and α,ω-diamines[J]. Green Chem., 2018, 20(20): 4591-4595. |
53 | Schrewe M, Ladkau N, Bühler B, et al. Direct terminal alkylamino-functionalization via multistep biocatalysis in one recombinant whole-cell catalyst[J]. Adv. Synth. Catal., 2013, 355(9): 1693-1697. |
54 | Ladkau N, Assmann M, Schrewe M, et al. Efficient production of the nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli[J]. Metab. Eng., 2016, 36: 1-9. |
55 | Ahsan M, Patil M, Jeon H, et al. Biosynthesis of nylon 12 monomer, ω-aminododecanoic acid using artificial self-sufficient P450, AlkJ and ω-TA[J]. Catalysts, 2018, 8(9): 400. |
56 | Simon R C, Richter N, Busto E, et al. Recent developments of cascade reactions involving ω-transaminases[J]. ACS Catal., 2013, 4(1): 129-143. |
57 | Scheps D, Malca S H, Hoffmann H, et al. Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666[J]. Org. Biomol. Chem., 2011, 9(19): 6727-6733. |
58 | Maier T, Förster H H, Asperger O, et al. Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp.EB104[J]. Biochem. Biophys. Res. Commun., 2001, 286(3): 652-658. |
59 | van Beilen J B, Wubbolts M G, Witholt B. Genetics of alkane oxidation by Pseudomonas oleovorans[J]. Biodegradation, 1994, 5(3/4): 161-174. |
60 | Schrewe M, Magnusson A, Willrodt C, et al. Kinetic analysis of terminal and unactivated C—H bond oxyfunctionalization in fatty acid methyl esters by monooxygenase-based whole-cell biocatalysis[J]. Adv. Synth. Catal., 2011, 353(18): 3485-3495. |
61 | Kirmair L, Skerra A. Biochemical analysis of recombinant AlkJ from Pseudomonas putida reveals a membrane-associated, flavin adenine dinucleotide-dependent dehydrogenase suitable for the biosynthetic production of aliphatic aldehydes[J]. Appl. Environ. Microbiol., 2014, 80(8): 2468-2477. |
62 | Taylor P P, Pantaleone D P, Senkpeil R F. Novel biosynthetic approaches to the production of unnatural amino acids using transaminases[J]. Trends Biotechnol., 1998, 16(10): 412-418. |
63 | Slabu I, Galman J L, Lloyd R C, et al. Discovery, engineering, and synthetic application of transaminase biocatalysts[J]. ACS Catal., 2017, 7(12): 8263-8284. |
64 | Höhne M, Bornscheuer U T. Biocatalytic routes to optically active amines[J]. ChemCatChem, 2009, 1(1): 42-51. |
65 | Richter N, Farnberger J E, Pressnitz D, et al. A system for ω-transaminase mediated (R)-amination using L-alanine as an amine donor[J]. Green Chem., 2015, 17(5): 2952-2958. |
66 | Tseliou V, Knaus T, Masman M F, et al. Generation of amine dehydrogenases with increased catalytic performance and substrate scope from ε-deaminating L-lysine dehydrogenase[J]. Nat. Commun., 2019, 10(1): 3717. |
67 | Citoler J, Derrington S R, Galman J L, et al. A biocatalytic cascade for the conversion of fatty acids to fatty amines[J]. Green Chem., 2019, 21(18): 4932-4935. |
68 | Martínez A T, Ruiz-Dueñas F J, Camarero S, et al. Oxidoreductases on their way to industrial biotransformations[J]. Biotechnol. Adv., 2017, 35(6): 815-831. |
69 | Carro J, González-Benjumea A, Fernández-Fueyo E, et al. Modulating fatty acid epoxidation vs hydroxylation in a fungal peroxygenase[J]. ACS Catal., 2019, 9(7): 6234-6242. |
70 | Ricca E, Brucher B, Schrittwieser J H. Multi-enzymatic cascade reactions: overview and perspectives[J]. Adv. Synth. Catal., 2011, 353(13): 2239-2262. |
71 | Mutti F G, Knaus T, Scrutton N S, et al. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades[J]. Science, 2016, 47(6): 1525-1529. |
72 | Schrittwieser J H, Velikogne S, Hall M, et al. Artificial biocatalytic linear cascades for preparation of organic molecules[J]. Chem. Rev., 2018, 118(1): 270-348. |
73 | Liu S, Zhang X, Liu F, et al. Designing of a cofactor self-sufficient whole-cell biocatalyst system for production of 1,2-amino alcohols from epoxides[J]. ACS Synth. Biol., 2019, 8(4): 734-743. |
74 | Song J W, Seo J H, Oh D K, et al. Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids[J]. Catal. Sci. Technol., 2020, 10(1): 46-64. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[10] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[11] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[12] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||