CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 4945-4956.DOI: 10.11949/0438-1157.20200446
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Jingxing YAO1,3(),Yao YANG2,3(),Zhengliang HUANG2,3,Jingyuan SUN2,3,Jingdai WANG1,2,3,Yongrong YANG1,2,3
Received:
2020-04-29
Revised:
2020-07-03
Online:
2020-11-05
Published:
2020-11-05
Contact:
Yao YANG
姚晶星1,3(),杨遥2,3(),黄正梁2,3,孙婧元2,3,王靖岱1,2,3,阳永荣1,2,3
通讯作者:
杨遥
作者简介:
姚晶星(1996—),男,硕士研究生,基金资助:
CLC Number:
Jingxing YAO,Yao YANG,Zhengliang HUANG,Jingyuan SUN,Jingdai WANG,Yongrong YANG. Impact of viscosity model on simulation of condensed particle flow by Euler multiphase flow model[J]. CIESC Journal, 2020, 71(11): 4945-4956.
姚晶星,杨遥,黄正梁,孙婧元,王靖岱,阳永荣. 颗粒黏度模型对采用欧拉多相流模型模拟超密相颗粒流动行为的影响[J]. 化工学报, 2020, 71(11): 4945-4956.
Add to citation manager EndNote|Ris|BibTeX
Model | Correlation |
---|---|
governing equations | |
continuity equations | gas: |
solid: | |
momentum equations | gas: |
solid: | |
constitutive equation | |
solid pressure | |
solid shear viscosity | |
collisional viscosity | |
kinetic viscosity | |
frictional viscosity | |
bulk viscosity | |
granular conductivity | |
gas-solid drag coefficient |
Table 1 Mathematical formulas for simulation
Model | Correlation |
---|---|
governing equations | |
continuity equations | gas: |
solid: | |
momentum equations | gas: |
solid: | |
constitutive equation | |
solid pressure | |
solid shear viscosity | |
collisional viscosity | |
kinetic viscosity | |
frictional viscosity | |
bulk viscosity | |
granular conductivity | |
gas-solid drag coefficient |
Parameter | Value |
---|---|
gas flow rate /(m3·h-1) | 1.0 |
particle-particle coefficient of restitution,e | 0.9 |
internal frictional angle,θ / (°) | 22 |
threshold volume fraction for friction,εs,min | 0.5 |
maximum solids packing,εs,max | 0.57 |
initial solids packing,εs,initial | 0.56 |
gas inlet boundary type | velocity inlet |
outlet boundary type | pressure outlet |
wall boundary type | no slip |
Table 2 Parameters setting of Euler multiphase flow simulations
Parameter | Value |
---|---|
gas flow rate /(m3·h-1) | 1.0 |
particle-particle coefficient of restitution,e | 0.9 |
internal frictional angle,θ / (°) | 22 |
threshold volume fraction for friction,εs,min | 0.5 |
maximum solids packing,εs,max | 0.57 |
initial solids packing,εs,initial | 0.56 |
gas inlet boundary type | velocity inlet |
outlet boundary type | pressure outlet |
wall boundary type | no slip |
1 | 田恬. 密集颗粒物料流动特性数值模拟研究[D]. 北京: 中国科学院大学, 2017. |
Tian T. Numerical investigation of the flow behavior of dense granular materials[D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
2 | Pallarès D, Johnsson F. A novel technique for particle tracking in cold 2-dimensional fluidized beds—simulating fuel dispersion[J]. Chemical Engineering Science, 2006, 61(8): 2710-2720. |
3 | Sette E, Pallarès D, Johnsson F, et al. Magnetic tracer-particle tracking in a fluid dynamically down-scaled bubbling fluidized bed[J]. Fuel Processing Technology, 2015, 138: 368-377. |
4 | Boelhouwer J G, Pipers H W, Drinkenburg A A H. Nature and characteristics of pulsing flow in trickle-bed reactors[J]. Chemical Engineering Science, 2002, 57(22/23): 4865-4876. |
5 | White D J, Take W A, Bolton M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631. |
6 | Slominski C, Niedostatkiewicz M, Tejchman J. Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow[J]. Powder Technology, 2007, 173(1): 1-18. |
7 | Zhao T, Eda T, Achyut S, et al. Investigation of pulsing flow regime transition and pulse characteristics in trickle-bed reactor by electrical resistance tomography[J]. Chemical Engineering Science, 2015, 130: 8-17. |
8 | Kou B, Cao Y, Xia C, et al. Granular materials flow like complex fluids[J]. Nature, 2017, 551(7680): 360-363. |
9 | Wang Z, Afacan A, Nandakumar K, et al. Porosity distribution in random packed columns by gamma ray tomography[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(3): 209-219. |
10 | Demoisson F, Ariane M, Leybros A, et al. Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials[J]. The Journal of Supercritical Fluids, 2011, 58(3): 371-377. |
11 | Uebel K, Rößger P, Prüfert U, et al. CFD-based multi-objective optimization of a quench reactor design[J]. Fuel Processing Technology, 2016, 149: 290-304. |
12 | Á Frías-Ferrer, Tudela I, Louisnard O, et al. Optimized design of an electrochemical filter-press reactor using CFD methods[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 270-281. |
13 | Dixon A G, Nijemeisland M. CFD as a design tool for fixed-bed reactors[J]. Ind. Eng. Chem. Res., 2001, 40(23): 5246-5254. |
14 | Ding J, Wang X, Zhou X, et al. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production[J]. Bioresour. Technol., 2010, 101(18): 7005-7013. |
15 | Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J].Géotechnique, 1979, 29(1): 47-65. |
16 | Baniasadi M, Peters B. Resolving multiphase flow through packed bed of solid particles using extended discrete element method with porosity calculation[J]. Industrial & Engineering Chemistry Research, 2017, 56(41): 11996-12008. |
17 | Boccardo G, Augier F, Haroun Y, et al. Validation of a novel open-source work-flow for the simulation of packed-bed reactors[J]. Chemical Engineering Journal, 2015, 279: 809-820. |
18 | Gidaspow D. Hydrodynamics of fluidization and heat transfer: supercomputer modeling[J]. Applied Mechanics Reviews, 1986, 39(1): 1-23. |
19 | Lan X, Xu C, Gao J, et al. Influence of solid-phase wall boundary condition on CFD simulation of spouted beds[J]. Chemical Engineering Science, 2012, 69(1): 419-430. |
20 | Srivastava A, Sundaresan S. Analysis of a frictional-kinetic model for gas-particle flow[J]. Powder Technology, 2003, 129(1/2/3): 72-85. |
21 | He Y, Xiao F Z, Luo Z H. Numerical modeling of the cavity phenomenon and its elimination way in rectangular radial moving bed reactor[J]. Powder Technology, 2015, 274: 28-36. |
22 | Bertuola D, Volpato S, Canu A, et al. Prediction of segregation in funnel and mass flow discharge[J]. Chemical Engineering Science, 2016, 150: 16-25. |
23 | Tian T, Su J, Zhan J, et al. Discrete and continuum modeling of granular flow in silo discharge[J]. Particuology, 2018, 36: 127-138. |
24 | Du W, Bao X, Xu J, et al. Computational fluid dynamics (CFD) modeling of spouted bed: assessment of drag coefficient correlations [J]. Chemical Engineering Science, 2006, 61(14): 1401-1420. |
25 | He Y L, Lim C J, Grace J R, et al. Measurements of voidage profiles inspouted beds[J]. The Canadian Journal of Chemical Engineering, 1994, 72(2): 229-234. |
26 | Lundberg J. CFD study of a bubbling fluidized bed[D]. Norway: Telemark University College, 2008. |
27 | Lun C K K, Savage S B, Jeffrey D J, et al. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield[J]. Journal of Fluid Mechanics, 2006, 140: 223-256. |
28 | Gidaspow D. Multiphase Flow and Fluidization[M]. Boston: Academic Press, 1994. |
29 | Schaeffer D G. Instability in the evolution equations describing incompressible granular flow[J]. Journal of Differential Equations, 1987, 66: 19-50. |
30 | Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds, kinetic theory approach[C]// Fluidization Ⅶ. Proceedings of the 7th Engineering Foundation Conference on Fluidization. 1992: 75-82. |
31 | Johnson P C, Nott P, Jackson R. Frictional-collisional equations of motion for particulate flows and their application to chutes[J]. Journal of Fluid Mechanics, 1990, 210: 501-535. |
32 | Ogawa S, Umemure A, Oshima N. On the equation of fully fluidized granular materials[J]. Journal of Applied Mathematics and Physics, 1980, 31: 483-493. |
33 | Lebowitz J L. Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres[J]. Journal of the Physical Review, 1964, 133: A895-A899. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[5] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[9] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[10] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[11] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[12] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[13] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||