CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 4936-4944.DOI: 10.11949/0438-1157.20200787

• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles     Next Articles

Coupling simulation analysis of micro-interface mass transfer in aerobic fermentation

Yaocheng FENG(),Litai REN,Feng ZHANG(),Zhibing ZHANG   

  1. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
  • Received:2020-06-22 Revised:2020-09-17 Online:2020-11-05 Published:2020-11-05
  • Contact: Feng ZHANG

好氧发酵过程微界面传质耦合模拟分析

冯尧成(),任厉泰,张锋(),张志炳   

  1. 南京大学化学化工学院,江苏 南京 210023
  • 通讯作者: 张锋
  • 作者简介:冯尧成(1995—),男,硕士研究生,njuchemfyc@163.com
  • 基金资助:
    国家自然科学基金项目(21776122);中国石油化工股份有限公司大连石油化工研究院合作项目(418012-3)

Abstract:

The microbial aerobic fermentation process is a multi-phase biochemical reaction system, and the mass transfer rate of oxygen in air between the gas-liquid two phases has an important impact on the biochemical fermentation process. The transmission characteristics of oxygen in the bubble are the result of the combined influence of the bubble's morphology, movement and system temperature, pressure and physical properties. By establishing a two-component air bubble rising and its oxygen mass transfer coupling model, numerical simulation is used to describe the strengthening effect of the micro-interface system in the aerobic fermentation system. The energy dissipation theory is used to evaluate the energy consumption of the manufacturing microbubble system to obtain a cost-effective bubble shape and a high oxygen utilization rate. The calculation results show that, under the preset working conditions, in a reactor with a certain liquid level, the bubbles with an initial radius greater than 500 μm will escape the system in a short time, resulting in waste of materials; while the initial radius of bubbles is less than 100 μm, its residence time, mass transfer efficiency and oxygen utilization rate will be significantly improved. The generation of small bubbles requires greater energy consumption. Without considering the influence of other factors, if the DO value in the system is maintained at 20% to 30%, the maximum oxygen mass transfer rate can be obtained.

Key words: multiphase reaction, bubble, coupling model, aerobic fermentation, energy consumption

摘要:

微生物好氧发酵过程是一个多相生化反应体系,空气中的氧在气液两相间的传质速率对生化发酵过程有重要影响。而气泡中氧的传递特性是气泡的形态、运动及体系温度、压力和物性综合影响的结果。通过建立两组分空气气泡上升及其氧传质耦合模型,进而采用数值模拟描述好氧发酵体系中微界面体系的强化效果。利用能量耗散理论评价制造微气泡体系的能耗,以获得高性价比的气泡形态和较高的氧利用率。计算结果表明,在预设的工况下,液面高度一定的反应器内,初始半径大于500 μm的气泡会在短时间内逸出体系,造成物料浪费;而气泡初始半径小于100 μm时,其停留时间、传质效率和氧利用率会显著提升。小气泡的生成需要较大的能耗,需要综合生产成本考虑。在不考虑其他因素影响的情况下,体系中的DO值如果维持在20%~30%,可以获得最大的氧气传质速率。

关键词: 多相反应, 气泡, 耦合模型, 好氧发酵, 能耗

CLC Number: