1 |
Mizuno N, Misono M. Heterogeneous catalysis[J]. Chem. Rev., 1998, 98: 199-217.
|
2 |
Cinneide A, Clarke J. Catalysis on supported metals[J]. Catal. Rev., 1972, 7: 213-232.
|
3 |
Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J. Am. Chem. Soc., 1978, 100: 170-175.
|
4 |
Cargnello M, Nguyen D V V T, Gordon T R, et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts[J]. Science, 2013, 341: 771-773.
|
5 |
Kattel S, Ramírez P J, Chen J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355: 1296-1299.
|
6 |
Fu Q, Li W X, Yao Y X, et al. Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328: 1141-1144.
|
7 |
Xu C F, Chen G X, Zhao Y, et al. Interfacing with silica boosts the catalysis of copper[J]. Nat. Commun., 2018, 9: 3367-3377.
|
8 |
Cao L N, Liu W, Luo Q Q, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2[J]. Nature, 2019, 565: 631-635.
|
9 |
Chen G X, Zhao Y, Fu G, et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation[J]. Science, 2014, 344: 495-499.
|
10 |
Gao L J, Fu Q, Wei M M, et al. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells[J]. ACS Catal., 2016, 6: 6814-6822.
|
11 |
Cheng K, Zhou W, Kang J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem., 2017, 3: 334-347.
|
12 |
Ro I, Resasco J, Christopher P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts[J]. ACS Catal., 2018, 8: 7368-7387.
|
13 |
Guzman J, Carrettin S, Gonzalez F J C, et al. CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species [J]. Angew. Chem. Int. Ed., 2005, 44: 4778-4781.
|
14 |
Vilhelmsen L B, Hammer B. Identification of the catalytic site at the interface perimeter of Au clusters on rutile TiO2(110)[J]. ACS Catal., 2014, 4: 1626-1631.
|
15 |
Xu M, Yao S Y, Rao D M, et al. Insights into interfacial synergistic catalysis over Ni@TiO2-x catalyst toward water-gas shift reaction[J]. J. Am. Chem. Soc., 2018, 140: 11241-11251.
|
16 |
Fu X P, Guo L W, Wang W W, et al. Direct identification of active surface species for the water-gas shift reaction on a gold-ceria catalyst[J]. J. Am. Chem. Soc., 2019, 141: 4613-4623.
|
17 |
Hao T, Zhang C, Su P P, et al. Metal-organic-framework-derived formation of Co-N-doped carbon materials for efficient oxygen reduction reaction[J]. J. Energy Chem., 2020, 40: 137-143.
|
18 |
Tang H J, Chen W, Wang J Y, et al. Electrocatalytic N-doped graphitic nanofiber-metal/metal oxide nanoparticle composites[J]. Small, 2018, 14: 1703459.
|
19 |
Zhao M Q, Zhang Q, Zhang W, et al. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides[J]. J. Am. Chem. Soc., 2010, 132: 14739-14741.
|
20 |
Chen S Y, Yan Y, Hao P P, et al. Iron nanoparticles encapsulated in S,N-codoped carbon: sulfur doping enriches surface electron density and enhances electrocatalytic activity toward oxygen reduction[J]. ACS Appl. Mater. Interfaces., 2020, 12: 12686-12695.
|
21 |
Chen A L, Yu X J, Zhou Y, et al. Structure of the catalytically active copper-ceria interfacial perimeter[J]. Nat. Catal., 2019, 2:334-341.
|
22 |
Liu N, Xu M, Yang Y S, et al. Auδ--Ov-Ti3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction[J]. ACS Catal., 2019, 9: 2707-2717.
|
23 |
Zhang J, Wang H, Wang L, et al. Wet-chemistry strong metal-support interactions in titania-supported Au catalysts [J]. J. Am. Chem. Soc., 2019, 141: 2975-2983.
|
24 |
Munnik P, Jongh P E, Jong K P. Recent developments in the synthesis of supported catalysts[J]. Chem. Rev., 2015, 115: 6687-6718.
|
25 |
Hao P P, Xie M J, Chen S Y, et al. Surrounded catalysts prepared by ion-exchange inverse loading [J]. Sci. Adv., 2020, 6: eaay7031.
|
26 |
Xie M J, Duan S Y, Shen Y, et al. In-situ-grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor[J]. ACS Energy Lett., 2016, 1: 814-819.
|
27 |
Xie M, Xu Z C, Duan S Y, et al. Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications[J]. Nano Res., 2018, 11: 216-224.
|
28 |
Jia C M, Gao J J, Li J, et al. Nickel catalysts supported on calcium titanate for enhanced CO methanation[J]. Cat. Sci. Technol., 2013, 3: 490-499.
|
29 |
Wang L, Guan E, Zhang J, et al. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation[J]. Nat. Commun., 2018, 9: 1362-1370.
|
30 |
Zhang S, Chang C R, Huang Z Q, et al. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes[J]. J. Am. Chem. Soc., 2016, 138: 2629-2637.
|
31 |
Hou T T, Wang Y H, Zhang J, et al. Peculiar hydrogenation reactivity of Ni-Niδ+ clusters stabilized by ceria in reducing nitrobenzene to azoxybenzene[J]. J. Catal., 2017, 353: 107-115.
|
32 |
Yang K X, Chen X, Wang L, et al. SBA-15-supported metal silicides prepared by chemical vapor deposition as efficient catalysts towards the semihydrogenation of phenylacetylene[J]. ChemCatChem, 2017, 9: 1337-1342.
|