CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 4957-4963.DOI: 10.11949/0438-1157.20201001
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Panpan HAO(),Jian LIU,Mingjiang XIE,Xuan WANG,Shanyong CHEN,Weiping DING,Xuefeng GUO(
)
Received:
2020-07-23
Revised:
2020-09-15
Online:
2020-11-05
Published:
2020-11-05
Contact:
Xuefeng GUO
通讯作者:
郭学锋
作者简介:
郝盼盼(1992—),女,2016—2020年在南京大学化学化工学院攻读博士学位,基金资助:
CLC Number:
Panpan HAO,Jian LIU,Mingjiang XIE,Xuan WANG,Shanyong CHEN,Weiping DING,Xuefeng GUO. Surrounded catalysts: concept, design and catalytic performance[J]. CIESC Journal, 2020, 71(11): 4957-4963.
郝盼盼,刘健,解明江,王轩,陈善勇,丁维平,郭学锋. 包围型催化剂:理念、设计及催化性能研究[J]. 化工学报, 2020, 71(11): 4957-4963.
Fig.3 Schematic and TEM images and the corresponding Ni particle size distribution of Ni@Al2O3-IE surrounded catalyst prepared with different ion-exchange degree
1 | Mizuno N, Misono M. Heterogeneous catalysis[J]. Chem. Rev., 1998, 98: 199-217. |
2 | Cinneide A, Clarke J. Catalysis on supported metals[J]. Catal. Rev., 1972, 7: 213-232. |
3 | Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J. Am. Chem. Soc., 1978, 100: 170-175. |
4 | Cargnello M, Nguyen D V V T, Gordon T R, et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts[J]. Science, 2013, 341: 771-773. |
5 | Kattel S, Ramírez P J, Chen J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355: 1296-1299. |
6 | Fu Q, Li W X, Yao Y X, et al. Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328: 1141-1144. |
7 | Xu C F, Chen G X, Zhao Y, et al. Interfacing with silica boosts the catalysis of copper[J]. Nat. Commun., 2018, 9: 3367-3377. |
8 | Cao L N, Liu W, Luo Q Q, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2[J]. Nature, 2019, 565: 631-635. |
9 | Chen G X, Zhao Y, Fu G, et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation[J]. Science, 2014, 344: 495-499. |
10 | Gao L J, Fu Q, Wei M M, et al. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells[J]. ACS Catal., 2016, 6: 6814-6822. |
11 | Cheng K, Zhou W, Kang J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem., 2017, 3: 334-347. |
12 | Ro I, Resasco J, Christopher P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts[J]. ACS Catal., 2018, 8: 7368-7387. |
13 | Guzman J, Carrettin S, Gonzalez F J C, et al. CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species [J]. Angew. Chem. Int. Ed., 2005, 44: 4778-4781. |
14 | Vilhelmsen L B, Hammer B. Identification of the catalytic site at the interface perimeter of Au clusters on rutile TiO2(110)[J]. ACS Catal., 2014, 4: 1626-1631. |
15 | Xu M, Yao S Y, Rao D M, et al. Insights into interfacial synergistic catalysis over Ni@TiO2-x catalyst toward water-gas shift reaction[J]. J. Am. Chem. Soc., 2018, 140: 11241-11251. |
16 | Fu X P, Guo L W, Wang W W, et al. Direct identification of active surface species for the water-gas shift reaction on a gold-ceria catalyst[J]. J. Am. Chem. Soc., 2019, 141: 4613-4623. |
17 | Hao T, Zhang C, Su P P, et al. Metal-organic-framework-derived formation of Co-N-doped carbon materials for efficient oxygen reduction reaction[J]. J. Energy Chem., 2020, 40: 137-143. |
18 | Tang H J, Chen W, Wang J Y, et al. Electrocatalytic N-doped graphitic nanofiber-metal/metal oxide nanoparticle composites[J]. Small, 2018, 14: 1703459. |
19 | Zhao M Q, Zhang Q, Zhang W, et al. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides[J]. J. Am. Chem. Soc., 2010, 132: 14739-14741. |
20 | Chen S Y, Yan Y, Hao P P, et al. Iron nanoparticles encapsulated in S,N-codoped carbon: sulfur doping enriches surface electron density and enhances electrocatalytic activity toward oxygen reduction[J]. ACS Appl. Mater. Interfaces., 2020, 12: 12686-12695. |
21 | Chen A L, Yu X J, Zhou Y, et al. Structure of the catalytically active copper-ceria interfacial perimeter[J]. Nat. Catal., 2019, 2:334-341. |
22 | Liu N, Xu M, Yang Y S, et al. Auδ--Ov-Ti3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction[J]. ACS Catal., 2019, 9: 2707-2717. |
23 | Zhang J, Wang H, Wang L, et al. Wet-chemistry strong metal-support interactions in titania-supported Au catalysts [J]. J. Am. Chem. Soc., 2019, 141: 2975-2983. |
24 | Munnik P, Jongh P E, Jong K P. Recent developments in the synthesis of supported catalysts[J]. Chem. Rev., 2015, 115: 6687-6718. |
25 | Hao P P, Xie M J, Chen S Y, et al. Surrounded catalysts prepared by ion-exchange inverse loading [J]. Sci. Adv., 2020, 6: eaay7031. |
26 | Xie M J, Duan S Y, Shen Y, et al. In-situ-grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor[J]. ACS Energy Lett., 2016, 1: 814-819. |
27 | Xie M, Xu Z C, Duan S Y, et al. Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications[J]. Nano Res., 2018, 11: 216-224. |
28 | Jia C M, Gao J J, Li J, et al. Nickel catalysts supported on calcium titanate for enhanced CO methanation[J]. Cat. Sci. Technol., 2013, 3: 490-499. |
29 | Wang L, Guan E, Zhang J, et al. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation[J]. Nat. Commun., 2018, 9: 1362-1370. |
30 | Zhang S, Chang C R, Huang Z Q, et al. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes[J]. J. Am. Chem. Soc., 2016, 138: 2629-2637. |
31 | Hou T T, Wang Y H, Zhang J, et al. Peculiar hydrogenation reactivity of Ni-Niδ+ clusters stabilized by ceria in reducing nitrobenzene to azoxybenzene[J]. J. Catal., 2017, 353: 107-115. |
32 | Yang K X, Chen X, Wang L, et al. SBA-15-supported metal silicides prepared by chemical vapor deposition as efficient catalysts towards the semihydrogenation of phenylacetylene[J]. ChemCatChem, 2017, 9: 1337-1342. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[8] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[9] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[10] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[11] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[12] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[13] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[14] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[15] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 594
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 712
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||