CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 2945-2955.DOI: 10.11949/0438-1157.20200070
• Reviews and monographs • Previous Articles Next Articles
Yueyang FENG1,2,3(),Ying WANG2,3,Mingdong YAO1,2,3(
),Wenhai XIAO2,3,Mingzhu DING2,3
Received:
2020-01-16
Revised:
2020-04-06
Online:
2020-07-05
Published:
2020-07-05
Contact:
Mingdong YAO
封悦洋1,2,3(),王颖2,3,姚明东1,2,3(
),肖文海2,3,丁明珠2,3
通讯作者:
姚明东
作者简介:
封悦洋(1995—),女,硕士研究生,基金资助:
CLC Number:
Yueyang FENG, Ying WANG, Mingdong YAO, Wenhai XIAO, Mingzhu DING. Advances in biosynthesis of quercetin glycoside derivatives[J]. CIESC Journal, 2020, 71(7): 2945-2955.
封悦洋, 王颖, 姚明东, 肖文海, 丁明珠. 生物合成槲皮素糖苷类衍生物的研究进展[J]. 化工学报, 2020, 71(7): 2945-2955.
糖苷 | 糖供体 | 糖基转移酶 | UDP-sugars生物合成相关基因 | 产量/(mg/L) | 文献 |
---|---|---|---|---|---|
quercetin-4'-O-glucoside | UDPG | AtUGT74F1 | — | 0.19 | [ |
quercetin-3'-O-glucoside | UDPG | AtUGT71C1 | — | 8 | [ |
quercetin-3-O-glucoside | UDPG | AtUGT73B3 | — | 99.3 | [ |
quercetin-3-O-glucoside | UDPG | AtUGT73B3 | Δpgi | 3900 | [ |
quercetin-7-O-glucoside | UDPG | AtUGT76E12 | — | 4.74 | [ |
quercetin-7-O-glucoside | UDPG | AtUGT84B1 | Δpgi | 95 | [ |
quercetin-3-O-rhamnoside | UDP-Rha | AtUGT78D1 | RHM2 | 150 | [ |
quercetin-3-O-rhamnoside | UDP-Rha | AtGT | BaSP, MUM4, Δpgm, ΔushA, Δagp, ΔgalETKM | 1120 | [ |
quercetin-3-O-galactoside | UDP-Gal | PhF3GT | BaSP, galE, Δpgm, ΔushA, Δagp, ΔgalETKM | 940 | [ |
quercetin-3-O-galactoside | UDP-Gal | PhUGT | GmSUS-galE | 2134 | [ |
quercetin-3-O-xyloside | UDP-Xyl | AtGT3 | naf44530-galU, calS8, calS9, Δpgi, Δzwf, ΔushA | 23.78 | [ |
quercetin-3-O-xyloside | UDP-Xyl | AtUGT78D3(E380Q) | ecugd, AtUXS, ΔarnA | 150 | [ |
quercetin-3-O-arabinoside | UDP-Ara | AtUGT78D3 | ecugd, AtUXS, OsUXE, ΔarnA | 158 | [ |
quercetin-3-O-glucuronide | UDP-GlcA | VvUGT | ecugd, ΔarnA | 687 | [ |
quercetin-3-O-N-acetylglucosamine | UDP-GlcNAc | AtUGT78D2 | galU | 380 | [ |
quercetin-3,7-di-O-glucoside | UDPG | AtUGT76E12 | — | 0.71 | [ |
quercetin-7,3'-di-O-glucoside | UDPG | AtUGT71C1 | — | 10.9 | [ |
quercetin-3-O-glucoside-7-O-rhamnoside | UDPG UDP-Rha | AtUGT78D2 AtUGT89C1 | — | 67 | [ |
quercetin-3-O-glucosyl(1→2)xyloside | UDPG UDP-Xyl | AtUGT78D2 AtUGT79B1 | ecugd, AtUXS | 65 | [ |
quercetin-3-O-glucosyl(1→6)rhamnoside | UDPG UDP-Rha | BcUGT1 GmFg2 | AtRHM2 | 119.8 | [ |
quercetin-3-O-glucuronic acid-7-O-rhamnoside | UDP-GlcA UDP-Rha | VvUGT AtUGT89C1 | ecugd, AtRHM2 | 44.8 | [ |
quercetin-3-O-arabinosE-7-O- rhamnoside | UDP-Ara UDP-Rha | AtUGT78D3 AtUGT89C1 | OsUXE, AtUXS, ecugd, AtRHM | 45.1 | [ |
Table 1 Biosynthesis of quercetin glycosides in E. coli
糖苷 | 糖供体 | 糖基转移酶 | UDP-sugars生物合成相关基因 | 产量/(mg/L) | 文献 |
---|---|---|---|---|---|
quercetin-4'-O-glucoside | UDPG | AtUGT74F1 | — | 0.19 | [ |
quercetin-3'-O-glucoside | UDPG | AtUGT71C1 | — | 8 | [ |
quercetin-3-O-glucoside | UDPG | AtUGT73B3 | — | 99.3 | [ |
quercetin-3-O-glucoside | UDPG | AtUGT73B3 | Δpgi | 3900 | [ |
quercetin-7-O-glucoside | UDPG | AtUGT76E12 | — | 4.74 | [ |
quercetin-7-O-glucoside | UDPG | AtUGT84B1 | Δpgi | 95 | [ |
quercetin-3-O-rhamnoside | UDP-Rha | AtUGT78D1 | RHM2 | 150 | [ |
quercetin-3-O-rhamnoside | UDP-Rha | AtGT | BaSP, MUM4, Δpgm, ΔushA, Δagp, ΔgalETKM | 1120 | [ |
quercetin-3-O-galactoside | UDP-Gal | PhF3GT | BaSP, galE, Δpgm, ΔushA, Δagp, ΔgalETKM | 940 | [ |
quercetin-3-O-galactoside | UDP-Gal | PhUGT | GmSUS-galE | 2134 | [ |
quercetin-3-O-xyloside | UDP-Xyl | AtGT3 | naf44530-galU, calS8, calS9, Δpgi, Δzwf, ΔushA | 23.78 | [ |
quercetin-3-O-xyloside | UDP-Xyl | AtUGT78D3(E380Q) | ecugd, AtUXS, ΔarnA | 150 | [ |
quercetin-3-O-arabinoside | UDP-Ara | AtUGT78D3 | ecugd, AtUXS, OsUXE, ΔarnA | 158 | [ |
quercetin-3-O-glucuronide | UDP-GlcA | VvUGT | ecugd, ΔarnA | 687 | [ |
quercetin-3-O-N-acetylglucosamine | UDP-GlcNAc | AtUGT78D2 | galU | 380 | [ |
quercetin-3,7-di-O-glucoside | UDPG | AtUGT76E12 | — | 0.71 | [ |
quercetin-7,3'-di-O-glucoside | UDPG | AtUGT71C1 | — | 10.9 | [ |
quercetin-3-O-glucoside-7-O-rhamnoside | UDPG UDP-Rha | AtUGT78D2 AtUGT89C1 | — | 67 | [ |
quercetin-3-O-glucosyl(1→2)xyloside | UDPG UDP-Xyl | AtUGT78D2 AtUGT79B1 | ecugd, AtUXS | 65 | [ |
quercetin-3-O-glucosyl(1→6)rhamnoside | UDPG UDP-Rha | BcUGT1 GmFg2 | AtRHM2 | 119.8 | [ |
quercetin-3-O-glucuronic acid-7-O-rhamnoside | UDP-GlcA UDP-Rha | VvUGT AtUGT89C1 | ecugd, AtRHM2 | 44.8 | [ |
quercetin-3-O-arabinosE-7-O- rhamnoside | UDP-Ara UDP-Rha | AtUGT78D3 AtUGT89C1 | OsUXE, AtUXS, ecugd, AtRHM | 45.1 | [ |
1 | Kren V, Martinkova L. Glycosides in medicine: “The role of glycosidic residue in biological activity”[J]. Curr. Med. Chem., 2001, 8(11): 1303-1328. |
2 | Jakeman D L, Sadeghi-Khomami A. A β-(1, 2)-glycosynthase and an attempted selection method for the directed evolution of glycosynthases[J]. Biochemistry, 2011, 50(47): 10359-10366. |
3 | Liu X, Cheng J, Zhang G, et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches[J]. Nat. Commun., 2018, 9(1): 448. |
4 | Shen X, Wang J, Wang J, et al. High-level de novo biosynthesis of arbutin in engineered Escherichia coli[J]. Metab. Eng., 2017, 42: 52-58. |
5 | Stahlhut S G, Siedler S, Malla S, et al. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli[J]. Metab. Eng., 2015, 31: 84-93. |
6 | 文中行, 胡占兴, 袁洁, 等. 槲皮素糖苷类化合物的合成及其对α-葡萄糖苷酶的抑制活性[J]. 山地农业生物学报, 2016, 35(3): 18-24. |
Wen Z H, Hu Z X, Yuan J, et al. Synthesis of quercetin glycosides and their inhibitory activities to α-glucosidase[J]. Journal of Mountain Agriculture and Biology, 2016, 35(3): 18-24. | |
7 | 叶林虎, 闫明珠, 孔令提, 等. 槲皮素及其糖苷类化合物对P450酶活性的体外抑制作用[J]. 中国药学杂志, 2014, 49(12): 1051-1055. |
Ye L H, Yan M Z, Kong L T, et al. In vitro inhibition of quercetin and its glycosides on P450 enzyme activities[J]. Chin. Pharmacol. J., 2014, 49(12): 1051-1055. | |
8 | Lu J, Li J, Wang S, et al. Advances in ginsenoside biosynthesis and metabolic regulation[J]. Biotechnol. Appl. Biochem., 2018, 65(4): 514-522. |
9 | Fraser-Reid B, López J C, Gammon D W, et al. Other methods for glycoside synthesis[M]//Demchenko A V. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance. Weinheim,Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. |
10 | Chung D, Kim S Y, Ahn J H. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli[J]. Sci. Rep., 2017, 7(1): 2578. |
11 | Lin Y, Sun X, Yuan Q, et al. Combinatorial biosynthesis of plant-specific coumarins in bacteria[J]. Metab. Eng., 2013, 18: 69-77. |
12 | Zhuang Y, Yang G, Chen X, et al. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme[J]. Metab. Eng., 2017, 42: 25-32. |
13 | Hansen E H, Moller B L, Kock G R, et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker s yeast (Saccharomyces cerevisiae)[J]. Appl. Environ. Microbiol., 2009, 75: 2765-2774 |
14 | Leonard E, Yan Y, Fowler Z L, et al. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids[J]. Mol. Pharm., 2008, 5: 257-265. |
15 | Wang X. Structure, mechanism and engineering of plant natural product glycosyltransferases[J]. FEBS Lett., 2009, 583(20): 3303-3309. |
16 | Huang F C, Hinkelmann J, Hermenau A. Enhanced production of β-glucosides by in-situ UDP-glucose regeneration[J]. J. Biotechnol., 2016, 224: 35-44. |
17 | de Bruyn F, Maertens J, Beauprez J, et al. Biotechnological advances in UDP-sugar based glycosylation of small molecules[J]. Biotechnol. Adv., 2015, 33(2): 288-302. |
18 | Lim E K, Ashford D A, Hou B, et al. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides[J]. Biotechnol. Bioeng., 2004, 87(5): 623-631. |
19 | Willits M G, Giovanni M, Prata R T N, et al. Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites[J]. Phytochemistry, 2004, 65(1): 31-41. |
20 | Kashyap D, Mittal S, Sak K, et al. Molecular mechanisms of action of quercetin in cancer: recent advances[J]. Tumor Biol., 2016, 37(10): 12927-12939. |
21 | 闫淑霞, 李鲜, 孙崇德, 等. 槲皮素及其糖苷衍生物降糖降脂活性研究进展[J]. 中国中药杂志, 2015, 40(23): 47-54. |
Yan S X, Li X, Sun C D, et al. Hypoglycemic and hypolipidemic effects of quercetin and its glycosides[J]. Chin. J. Chin. Mater. Med., 2015, 40(23): 47-54. | |
22 | Heo K T, Kang S Y, Hong Y S. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis[J]. Microb. Cell. Fact., 2017, 16(1): 30. |
23 | Reuben S, Rai A, Pillai B V S, et al. A bacterial quercetin oxidoreductase QuoA-mediated perturbation in the phenylpropanoid metabolic network increases lignification with a concomitant decrease in phenolamides in Arabidopsis[J]. J. Exp. Bot., 2013, 64(16): 5183-5194. |
24 | Wang Y, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms[J]. Appl. Microbiol. Biotechnol., 2011, 91: 949-956. |
25 | Crozier A, Jaganath I B, Clifford M N. Dietary phenolics: chemistry, bioavailability and effects on health[J].Nat. Prod. Rep., 2009, 26: 1001-1043. |
26 | Ververidis F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae[J]. Metab. Eng., 2009, 11(6): 355-366. |
27 | Yan Y, Koffas M A G, Leonard E. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli[J]. Metab. Eng., 2006, 8(2): 172-181. |
28 | Marín L, Gutiérrez-del-Río I, Entrialgo-Cadierno R, et al. De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor[J]. PLoS One, 2018, 13(11): e0207278. |
29 | Kallscheuer N, Vogt M, Bott M, et al. Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin[J]. J. Biotechnol., 2017, 258: 190-196. |
30 | Gutierrez A, Grunau A, Paine M, et al. Electron transfer in human cytochrome P450 reductase[J]. Biochem. Soc. Trans., 2003, 31(3): 497-501. |
31 | Rodriguez A, Strucko T, Stahlhut S G, et al. Metabolic engineering of yeast for fermentative production of flavonoids[J]. Bioresource Technology, 2017, 245(Pt B): 1645-1654. |
32 | Verstrepen K J, Iserentant D, Malcorps P, et al. Glucose and sucrose: hazardous fast-food for industrial yeast?[J]. Trends Biotechnol., 2004, 22(10): 531-537. |
33 | Liu X, Li X, Jiang J, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides[J]. Metab. Eng., 2018, 47: 243-253. |
34 | Rosenberger A F N, Hangelmann L, Hofinger A, et al. UDP-xylose and UDP-galactose synthesis in Trichomonas vaginalis[J]. Mol. Biochem. Parasit., 2012, 181(1): 53-56. |
35 | Oka T, Jigami Y. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae[J]. FEBS J., 2006, 273(12): 2645-2657. |
36 | Kim S Y, Lee H R, Park K S, et al. Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside[J]. Appl. Microbiol. Biotechnol., 2015, 99(5): 2233-2242. |
37 | Gu X, Lee S G, Bar-Peled M. Biosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase[J]. Microbiology, 2011, 157(1): 260-269. |
38 | Oikari S, Kettunen T, Tiainen S, et al. UDP-sugar accumulation drives hyaluronan synthesis in breast cancer[J]. Matrix Biol., 2018, 67: 63-74. |
39 | Dai X L, Zhao G F, Jiao T M, et al. Involvement of three CsRHM genes from Camellia sinensis in UDP-rhamnose biosynthesis[J]. J. Agric. Food Chem., 2018, 66(27): 7139-7149. |
40 | Tiwari P, Sangwan R S, Sangwan N S. Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and scopes[J]. Biotechnol. Adv., 2016, 34(5): 714-739. |
41 | Meech R, Hu D G, McKinnon R A, et al. The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms[J]. Physiol. Rev., 2019, 99(2): 1153-1222. |
42 | Paquette S M, Jensen K, Bak S. A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases[J]. Phytochemistry, 2009, 70(17): 1940-1947. |
43 | Willits M G, Giovanni Maité, Prata R T N, et al. Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites[J]. Phytochemistry, 2004, 65(1): 31-41. |
44 | Lim E K, Ashford D A, Hou B, et al. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides[J]. Biotechnol. Bioeng., 2004, 87(5): 623-631. |
45 | Xia T, Eiteman M A. Quercetin glucoside production by engineered Escherichia coli[J]. Appl. Biochem. Biotechnol., 2017, 182(4): 1358-1370. |
46 | Kim B G, Kim H J, Ahn J H. Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli[J]. J. Agric. Food Chem., 2012, 60(44): 11143-11148. |
47 | Bruyn F D, Brempt M V, Maertens J, et al. Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides[J]. Microb. Cell Fact., 2015, 14(1): 138. |
48 | Pei J, Chen A, Zhao L, et al. One-pot synthesis of hyperoside by a three-enzyme cascade using a UDP-galactose regeneration system[J]. J. Agric. Food Chem., 2017, 65(29): 6042-6048. |
49 | Pandey R P, Malla S, Simkhada D, et al. Production of 3-O-xylosyl quercetin in Escherichia coli[J]. Appl. Microbiol. Biotechnol., 2013, 97(5): 1889-1901. |
50 | Han S H, Kim B G, Yoon J A, et al. Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase[J]. Appl. Environ. Microbiol., 2014, 80(9): 2754-2762. |
51 | Kim S Y, Lee H R, Park K S, et al. Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside[J]. Appl. Microbiol. Biotechnol., 2015, 99(5): 2233-2242. |
52 | Kim B G, Sung S H, Ahn J H. Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2[J]. Appl. Microbiol. Biotechnol., 2012, 93(6): 2447-2453. |
53 | Roepke J, Bozzo G G. Biocatalytic synthesis of quercetin 3-O-glucoside-7-O-rhamnoside by metabolic engineering of Escherichia coli[J]. ChemBioChem, 2013, 14(18): 2418-2422. |
54 | An D G, Yang S M, Kim B G, et al. Biosynthesis of two quercetin O-diglycosides in Escherichia coli[J]. J. Ind. Microbiol. Biotechnol., 2016, 43(6): 841-849. |
55 | Choi G S, Kim H J, Kim E J, et al. Stepwise synthesis of quercetin bisglycosides using engineered Escherichia coli[J]. J. Microbiol. Biotechnol., 2018, 28(11): 1859-1864. |
56 | Osmani S A, Bak S, Møller B L. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling[J]. Phytochemistry, 2009, 70: 325-347. |
57 | Kim M J, Kim B G, Ahn J H. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli[J]. Appl. Microbiol. Biotechnol., 2013, 97: 7195-7204. |
58 | Noguchi A, Horikawa M, Fukui Y, et al. Local differentiation of sugar donor specificity of flavonoid glycosyltransferase in Lamiales[J]. Plant Cell, 2009, 21(5): 1556-1572. |
59 | Osmani S A, Bak S, Imberty A, et al. Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specifific mutagenesis and biochemical analyses[J]. Plant Physiol., 2008, 148(3): 1295-1308. |
60 | Kim B G, Jung N R, Joe E J, et al. Bacterial synthesis of a flavonoid deoxyaminosugar conjugate in Escherichia coli expressing a glycosyltransferase of Arabidopsis thaliana[J]. ChemBioChem, 2010, 11: 2389-2392. |
61 | Crh R, Whitfield C. Lipopolysaccharide endotoxins[J]. Annu. Rev. Biochem., 2002, 71: 635-700. |
62 | Steiner K, Schwab H. Recent advances in rational approaches for enzyme engineering[J]. Comput. Struct. Biotec., 2012, 2(3): 1-12. |
63 | Shao H. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula[J]. Plant Cell, 2005, 17(11): 3141-3154. |
64 | He X Z, Wang X, Dixon R A. Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation[J]. J. Biol. Chem., 2006, 281(45): 34441-34447. |
65 | Cartwright A M, Lim E K, Kleanthous C, et al. A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities[J]. J. Biol. Chem., 2008, 283(23): 15724-15731. |
66 | Chen X. Fermenting next generation glycosylated therapeutics[J]. ACS Chem. Biol., 2011, 6(1): 14-17. |
67 | Williams G J, Yang J, Zhang C, et al. Recombinant E. coli prototype strains for in vivo glycorandomization[J]. ACS Chem. Biol., 2011, 6(1): 95-100. |
68 | Simkhada D, Kim E M, Lee H C, et al. Metabolic engineering of Escherichia coli for the biological synthesis of 7-O-xylosyl naringenin[J]. Mol. Cells., 2009, 28(4): 397-401. |
69 | Malla S, Pandey R P, Kim B G, et al. Regiospecific modifications of naringenin for astragalin production in Escherichia coli[J]. Biotechnol. Bioeng., 2013, 110(9): 2525-2535. |
70 | de Bruyn F, de Paepe B, Maertens J, et al. Development of an in vivo glucosylation platform by coupling production to growth: production of phenolic glucosides by a glycosyltransferase of Vitis vinifera[J]. Biotechnol. Bioeng., 2015, 112(8): 1594-1603. |
71 | Masada S, Kawase Y, Nagatoshi M, et al. An efficient chemoenzymatic production of small molecule glucosides with in situ UDP-glucose recycling[J]. FEBS Lett., 2007, 581: 2562-2566. |
72 | Chen X, Fang J, Zhang J, et al. Sugar nucleotides regeneration beads (superbeads): a versatile tool for the practical synthesis of oligosaccharides[J]. J. Am. Chem. Soc., 2001, 123: 2081-2082. |
73 | Lee D C, Cottrill M A, Forsberg C W, et al. Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase[J]. J. Biol. Chem., 2003, 278(33): 31412-31418. |
74 | Oka T, Nemoto T, Jigami Y. Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion[J]. J. Biol. Chem., 2007, 282(8): 5389-5403. |
75 | Xie Z X, Li B Z, Mitchell L A, et al. “Perfect” designer chromosome V and behavior of a ring derivative [J]. Science, 2017, 355(6329): eaaf4704. |
76 | Wu Y, Li B Z, Zhao M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X [J]. Science, 2017, 355(6329): eaaf4706. |
[1] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[6] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[7] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[8] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[9] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[10] | Xinzhe ZHANG, Wentao SUN, Bo LYU, Chun LI. Oxidative modification of plant natural products and microbial manufacturing [J]. CIESC Journal, 2022, 73(7): 2790-2805. |
[11] | Yinlong XU, Wenchieh CHENG, Lin WANG, Zhongfei XUE, Yixin XIE. Implication and enhancement mechanism of chitosan-assisted enzyme- induced carbonate precipitation for copper wastewater treatment [J]. CIESC Journal, 2022, 73(5): 2222-2232. |
[12] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
[13] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[14] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[15] | Haibo LIU, Nan WANG, Hongzhou LIU, Tiezhu CHEN, Jianchang LI. Effects of voltage perturbation on the activities of microorganisms and key enzymes in EAD metabolic flux [J]. CIESC Journal, 2022, 73(10): 4603-4612. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 818
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||