CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3229-3237.DOI: 10.11949/0438-1157.20200011
• Biochemical engineering and technology • Previous Articles Next Articles
Yuling WU(),Minglong SHAO,Wulin ZHOU,Huifang GAO,Xian ZHANG,Meijuan XU,Taowei YANG,Zhiming RAO()
Received:
2020-01-03
Revised:
2020-03-07
Online:
2020-07-05
Published:
2020-07-05
Contact:
Zhiming RAO
吴玉玲(),邵明龙,周武林,高惠芳,张显,徐美娟,杨套伟,饶志明()
通讯作者:
饶志明
作者简介:
吴玉玲(1994—),女,硕士研究生,基金资助:
CLC Number:
Yuling WU, Minglong SHAO, Wulin ZHOU, Huifang GAO, Xian ZHANG, Meijuan XU, Taowei YANG, Zhiming RAO. Study on catalytic synthesis of boldenone by recombinant E. coli expressing 17β-hydroxysteroid dehydrogenase[J]. CIESC Journal, 2020, 71(7): 3229-3237.
吴玉玲, 邵明龙, 周武林, 高惠芳, 张显, 徐美娟, 杨套伟, 饶志明. 重组大肠杆菌表达17β-羟基类固醇脱氢酶全细胞催化合成宝丹酮的研究[J]. 化工学报, 2020, 71(7): 3229-3237.
Add to citation manager EndNote|Ris|BibTeX
菌株、质粒或引物 | 性质 | 来源 |
---|---|---|
菌株 | ||
Escherichia coli | ||
JM109 | 用于所有克隆实验 | Invitrogen |
BL21 (DE3) | 重组蛋白表达宿主 | Promega |
BL21/pET28a-HSDCl | 重组E. coli BL21 (DE3) ,携带pET28a- HSDCl | 本研究构建 |
BL21/pET28a-HSDPy | 重组E. coli BL21 (DE3) ,携带pET28a- HSDPy | 本研究构建 |
BL21/pET28a-HSDBb | 重组E. coli BL21 (DE3) ,携带 pET28a- HSDBb | 本研究构建 |
BL21/pET28a-HSDAo | 重组E. coli BL21 (DE3) ,携带 pET28a- HSDAo | 本研究构建 |
BL21/pET28a-HSDCt | 重组E. coli BL21 (DE3) ,携带pET28a- HSDCt | 本研究构建 |
BL21/pET28a-HSDBu | 重组E. coli BL21 (DE3) ,携带pET28a- HSDBu | 本研究构建 |
质粒 | ||
pUC57- HSDCl | pUC57携带来源于Cochliobolus lunatus经过密码子优化的17β-HSD基因,AmpR | 金唯智合成 |
pUC57- HSDPy | pUC57携带来源于Pyrenochaeta sp.经过密码子优化的17β-HSD基因, AmpR | 金唯智合成 |
pUC57- HSDBb | pUC57携带来源于Beauveria bassiana经过密码子优化的17β-HSD基因, AmpR | 金唯智合成 |
pUC57- HSDAo | pUC57携带来源于Arthroderma otae经过密码子优化的17β-HSD基因, AmpR | 金唯智合成 |
pUC57- HSDCt | pUC57携带来源于Comamonas testosterone经过密码子优化的17β-HSD基因,AmpR | 金唯智合成 |
pUC57- HSDBu | pUC57携带来源于Burkholderia sp.经过密码子优化的17β-HSD基因, AmpR | 金唯智合成 |
pET28a(+) | 大肠杆菌表达载体,KanR | Novagen |
pET28a-HSDCl | pET28a携带来源于Cochliobolus lunatus的17β-HSD基因, KanR | 本研究构建 |
pET28a-HSDPy | pET28a携带来源于Pyrenochaeta sp.的17β-HSD基因, KanR | 本研究构建 |
pET28a-HSDBb | pET28a携带来源于Beauveria bassiana的17β-HSD基因,KanR | 本研究构建 |
pET28a-HSDAo | pET28a携带来源于Arthroderma otae的17β-HSD基因,KanR | 本研究构建 |
pET28a-HSDCt | pET28a携带来源于Comamonas testosterone的17β-HSD基因,KanR | 本研究构建 |
pET28a-HSDBu | pET28a携带来源于Burkholderia sp.的17β-HSD基因,KanR | 本研究构建 |
引物 | 序列(5′-3′) | |
HSDCl-F | CG | |
HSDCl-R | CC | |
HSDPy-F | CG | |
HSDPy-R | CC | |
HSDBb-F | CG | |
HSDBb-R | CC | |
HSDAo-F | CG | |
HSDAo-R | CC | |
HSDCt-F | CG | |
HSDCt-R | CC | |
HSDBu-F | CG | |
HSDBu-R | CC |
Table 1 Strains, plasmids and primers used in this study
菌株、质粒或引物 | 性质 | 来源 |
---|---|---|
菌株 | ||
Escherichia coli | ||
JM109 | 用于所有克隆实验 | Invitrogen |
BL21 (DE3) | 重组蛋白表达宿主 | Promega |
BL21/pET28a-HSDCl | 重组E. coli BL21 (DE3) ,携带pET28a- HSDCl | 本研究构建 |
BL21/pET28a-HSDPy | 重组E. coli BL21 (DE3) ,携带pET28a- HSDPy | 本研究构建 |
BL21/pET28a-HSDBb | 重组E. coli BL21 (DE3) ,携带 pET28a- HSDBb | 本研究构建 |
BL21/pET28a-HSDAo | 重组E. coli BL21 (DE3) ,携带 pET28a- HSDAo | 本研究构建 |
BL21/pET28a-HSDCt | 重组E. coli BL21 (DE3) ,携带pET28a- HSDCt | 本研究构建 |
BL21/pET28a-HSDBu | 重组E. coli BL21 (DE3) ,携带pET28a- HSDBu | 本研究构建 |
质粒 | ||
pUC57- HSDCl | pUC57携带来源于Cochliobolus lunatus经过密码子优化的17β-HSD基因,AmpR | 金唯智合成 |
pUC57- HSDPy | pUC57携带来源于Pyrenochaeta sp.经过密码子优化的17β-HSD基因, AmpR | 金唯智合成 |
pUC57- HSDBb | pUC57携带来源于Beauveria bassiana经过密码子优化的17β-HSD基因, AmpR | 金唯智合成 |
pUC57- HSDAo | pUC57携带来源于Arthroderma otae经过密码子优化的17β-HSD基因, AmpR | 金唯智合成 |
pUC57- HSDCt | pUC57携带来源于Comamonas testosterone经过密码子优化的17β-HSD基因,AmpR | 金唯智合成 |
pUC57- HSDBu | pUC57携带来源于Burkholderia sp.经过密码子优化的17β-HSD基因, AmpR | 金唯智合成 |
pET28a(+) | 大肠杆菌表达载体,KanR | Novagen |
pET28a-HSDCl | pET28a携带来源于Cochliobolus lunatus的17β-HSD基因, KanR | 本研究构建 |
pET28a-HSDPy | pET28a携带来源于Pyrenochaeta sp.的17β-HSD基因, KanR | 本研究构建 |
pET28a-HSDBb | pET28a携带来源于Beauveria bassiana的17β-HSD基因,KanR | 本研究构建 |
pET28a-HSDAo | pET28a携带来源于Arthroderma otae的17β-HSD基因,KanR | 本研究构建 |
pET28a-HSDCt | pET28a携带来源于Comamonas testosterone的17β-HSD基因,KanR | 本研究构建 |
pET28a-HSDBu | pET28a携带来源于Burkholderia sp.的17β-HSD基因,KanR | 本研究构建 |
引物 | 序列(5′-3′) | |
HSDCl-F | CG | |
HSDCl-R | CC | |
HSDPy-F | CG | |
HSDPy-R | CC | |
HSDBb-F | CG | |
HSDBb-R | CC | |
HSDAo-F | CG | |
HSDAo-R | CC | |
HSDCt-F | CG | |
HSDCt-R | CC | |
HSDBu-F | CG | |
HSDBu-R | CC |
菌株 | 12 h转化率/% | 来源 |
---|---|---|
BL21/pET28a | — | — |
BL21/pET28a-HSDCl | 54.90 | Cochliobolus lunatus |
BL21/pET28a-HSDPy | 72.53 | Pyrenochaeta sp. |
BL21/pET28a-HSDBb | 23.12 | Beauveria bassiana |
BL21/pET28a-HSDAo | 10.11 | Arthroderma otae |
BL21/pET28a-HSDCt | 9.39 | Comamonas testosterone |
BL21/pET28a-HSDBu | 9.03 | Burkholderia sp. |
Table 2 Conversion of ADD by recombinant E. coli BL21/pET28a-HSD
菌株 | 12 h转化率/% | 来源 |
---|---|---|
BL21/pET28a | — | — |
BL21/pET28a-HSDCl | 54.90 | Cochliobolus lunatus |
BL21/pET28a-HSDPy | 72.53 | Pyrenochaeta sp. |
BL21/pET28a-HSDBb | 23.12 | Beauveria bassiana |
BL21/pET28a-HSDAo | 10.11 | Arthroderma otae |
BL21/pET28a-HSDCt | 9.39 | Comamonas testosterone |
BL21/pET28a-HSDBu | 9.03 | Burkholderia sp. |
1 | Eisa M, El-Refai H, Amin M. Single step biotransformation of corn oil phytosterols to boldenone by a newly isolated Pseudomonas aeruginosa [J]. Biotechnol. Rep., 2016, 11: 36-43. |
2 | 系祖斌, 薛文武, 刘卫东, 等. 一种高收率的宝丹酮的合成方法:103030677 A [P]. 2012-09-26. |
Xi Z B, Xue W W, Liu W D, et al. A high-yield method for the synthesis of boldenone:103030677 A [P]. 2012-09-26. | |
3 | Chen M M, Wang F Q, Lin L C, et al. Characterization and application of fusidane antibiotic biosynethsis enzyme 3-ketosteroid-1-dehydrogenase in steroid transformation [J]. Appl. Microbiol. Biotechnol., 2012, 96(1): 133-142. |
4 | Tang R, Shen Y, Xia M, et al. A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone [J]. Bioresour. Technol., 2019, 283: 242-250. |
5 | Moeller G, Adamski J. Multifunctionality of human 17beta-hydroxysteroid dehydrogenases [J]. Mol. Cell. Endocrinol., 2006, 248(1): 47-55. |
6 | Moeller G, Adamski J. Integrated view on 17beta-hydroxysteroid dehydrogenases [J]. Mol. Cell. Endocrinol., 2009, 301(1/2): 7-19. |
7 | Marchais-Oberwinkler S, Henn C, Moeller, et al. 17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development [J]. J. Steroid. Biochem. Mol. Biol., 2011, 125(1): 66-82. |
8 | Xu L Q, Liu Y J, Yao K, et al. Unraveling and engineering the production of 23, 24-bisnorcholenic steroids in sterol metabolism [J]. Sci. Rep., 2016, 6: 21928. |
9 | Kumar R, Dahiya J S, Singh D, et al. Biotransformation of cholesterol using Lactobacillus bulgaricus in a glucose-controlled bioreactor [J]. Bioresour. Technol., 2001, 78(2): 209-211. |
10 | Lanišnik Rižner T, Žakelj-Mavrič M. Characterization of fungal 17β-hydroxysteroid dehydrogenases [J]. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2000, 127(1): 53-63. |
11 | Donova M V, Egorova O V, Nikolayeva V M. Steroid 17β-reduction by microorganisms—a review [J]. Process Biochem., 2005, 40(7): 2253-2262. |
12 | Fernández-Cabezón L, Galán B, García J L. Engineering Mycobacterium smegmatis for testosterone production [J]. Microb. Biotechnol., 2017, 10(1): 151-161. |
13 | Xu X, Jin F, Yu X, et al. Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli [J]. Protein Expr. Purif., 2007, 53(2): 293-301. |
14 | Bradfod M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal. Biochem., 1976, 72: 248-254. |
15 | Shao M, Zhang X, Rao Z, et al. Efficient testosterone production by engineered Pichia pastoris co-expressing human 17β-hydroxysteroid dehydrogenase type 3 and Saccharomyces cerevisiae glucose 6-phosphate dehydrogenase with NADPH regeneration [J]. Green Chem., 2016, 18(6): 1774-1784. |
16 | Zhang W, Shao M, Rao Z, et al. Bioconversion of 4-androstene-3, 17-dione to androst-1, 4-diene-3, 17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum JC-12 [J]. J. Steroid. Biochem. Mol. Biol., 2013, 135: 36-42. |
17 | Egorova O V, Nikolayeva V M, Sukhodolskaya G V, et al. Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp. [J]. J. Mol. Catal., B Enzym., 2009, 57(1): 198-203. |
18 | Egorova O V, Nikolayeva V M, Suzina N E, et al. Localization of 17beta-hydroxysteroid dehydrogenase in Mycobacterium sp. VKM Ac-1815D mutant strain [J]. J. Steroid. Biochem. Mol. Biol., 2005, 94(5): 519-525. |
19 | Shao M, Chen Y, Zhang X, et al. Enhanced intracellular soluble production of 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum in Escherichia coli and its application in the androst-1, 4-diene-3, 17-dione production [J]. J. Chem. Technol. Biotechnol., 2017, 92(2): 350-357. |
20 | Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments [J]. Nucleic Acids Res., 2019, 47(1): 256-259. |
21 | Marchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures [J]. Nucleic Acids Res., 2017, 45(1): 200-203. |
22 | 戎晶晶, 刁振宇, 周国华. 大肠杆菌表达系统的研究进展 [J]. 药物生物技术, 2005, (6): 416-420. |
Rong J J, Diao Z Y, Zhou G H. Research progress of E. coli expression system [J]. Pharm. Biotechnol., 2005, (6): 416-420. | |
23 | Kagawa N, Hori H, Waterman M R, et al. Characterization of stable human aromatase expressed in E. coli [J]. Steroids, 2004, 69(4): 235-243. |
24 | Agematu H, Matsumoto N, Fujii Y, et al. Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system [J]. Biosci. Biotechnol. Biochem., 2006, 70(1): 307-311. |
25 | Neunzig J, Milhim M, Schiffer L, et al. The steroid metabolite 16(beta)-OH-androstenedione generated by CYP21A2 serves as a substrate for CYP19A1 [J]. J. Steroid. Biochem. Mol. Biol., 2017, 167: 182-191. |
26 | Zhao Y, Shen Y, Ma S, et al. Production of 5α-androstene-3, 17-dione from phytosterols by co-expression of 5α-reductase and glucose-6-phosphate dehydrogenase in engineered Mycobacterium neoaurum [J]. Green Chem., 2019, 21(7): 1809-1815. |
27 | Borrego S, Niub E, Ancheta O, et al. Study of the microbial aggregation inmycobacterium using image analysis and electron microscopy [J]. Tissue Cell, 2000, 32(6): 494-500. |
28 | Zhang D, Zhang R, Zhang J, et al. Engineering a hydroxysteroid dehydrogenase to improve its soluble expression for the asymmetric reduction of cortisone to 11beta-hydrocortisone [J]. Appl. Microbiol. Biotechnol., 2014, 98(21): 8879-8886. |
29 | Zehentgruber D, Dragan C A, Bureik M, et al. Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe [J]. J. Biotechnol., 2010, 146(4): 179-185. |
30 | Naumann J M, Zollner A, Dragan C A, et al. Biotechnological production of 20-alpha-dihydrodydrogesterone at pilot scale [J]. Appl. Biochem. Biotechnol., 2011, 165(1): 190-203. |
31 | 姜佳伟, 张荣珍, 周晓天, 等. (S)-羰基还原酶Ⅱ与葡萄糖脱氢酶共催化高效合成(S)-苯乙二醇 [J]. 微生物学报, 2016, 56(10): 1647-1655. |
Jiang J W, Zhang R Z, Zhou X T, et al. Efficient synthesis of (S) -phenylethylene glycol by (S) -carbonyl reductase Ⅱ and glucose dehydrogenase [J]. Acta Microbiologica Sinica, 2016, 56(10): 1647-1655. | |
32 | Szczebara F M, Chandelier C, Villeret C, et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast [J]. Nat. Biotechnol., 2003, 21(2): 143-149. |
33 | 陈天华, 张若思, 姜国珍, 等. 产蒎烯人工酵母细胞的构建 [J]. 化工学报, 2019, 70(1): 179-188. |
Chen T H, Zhang R S, Jiang G Z, et al. Construction of artificial yeast cells producing limonene [J]. CIESC Journal, 2019, 70(1): 179-188. | |
34 | 王金鹤, 王冬, 李畏娴, 等. 酿酒酵母工程菌UDP-葡萄糖供给模块的优化与人参皂苷F_1生产 [J]. 中国中药杂志, 2019, 44(21): 4596-1604. |
Wang J H, Wang D, Li W X, et al. Optimization of UDP-glucose supply module of Saccharomyces cerevisiae and production of ginsenoside F_1 [J]. China Journal of Chinese Materia Medica, 2019, 44(21): 4596-1604. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[3] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[6] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[7] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[8] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[9] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[10] | Jiachen SUN, Wentao SUN, Hui SUN, Bo LYU, Chun LI. Licorice flavone synthase Ⅱ catalyzes liquiritigenin to specifically synthesize 7,4′-dihydroxyflavone [J]. CIESC Journal, 2022, 73(7): 3202-3211. |
[11] | Lin WANG, Qian FU, Shuai XIAO, Zhuo LI, Jun LI, Liang ZHANG, Xun ZHU, Qiang LIAO. High-efficient visible light responsive microbial photoelectrochemical system for CO2 reduction to CH4 [J]. CIESC Journal, 2022, 73(2): 887-893. |
[12] | Wei SONG, Jinhui WANG, Guipeng HU, Xiulai CHEN, Liming LIU, Jing WU. Cascade catalysis for the synthesis of (R)-β-tyrosine [J]. CIESC Journal, 2022, 73(1): 352-361. |
[13] | DUAN Lingxuan, YAO Guangxiao, JIANG Liang, WANG Shizhen. Genome mining of organic solvent tolerant amino acid dehydrogenase for biosynthesis of unnatural amino acids in non-aqueous system [J]. CIESC Journal, 2021, 72(7): 3757-3767. |
[14] | LIU Shurui, WU Xue'e, WANG Yuanpeng. Progress in nanomaterials mediated microbial extracellular electron transfer [J]. CIESC Journal, 2021, 72(7): 3576-3589. |
[15] | PAN Yu, WANG Huasheng, ZHAN Hongfeng, SUN Huanhuan, FAN Chao, LIU Zuwen, YAN Hai. Structural and functional analysis of MlrA from microcystin-degrading bacteria [J]. CIESC Journal, 2021, 72(3): 1643-1653. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||