CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3576-3589.DOI: 10.11949/0438-1157.20201839
• Reviews and monographs • Previous Articles Next Articles
LIU Shurui(),WU Xue'e,WANG Yuanpeng()
Received:
2020-12-16
Revised:
2021-03-24
Online:
2021-07-05
Published:
2021-07-05
Contact:
WANG Yuanpeng
通讯作者:
王远鹏
作者简介:
刘姝睿(1992—),女,博士研究生,基金资助:
CLC Number:
LIU Shurui, WU Xue'e, WANG Yuanpeng. Progress in nanomaterials mediated microbial extracellular electron transfer[J]. CIESC Journal, 2021, 72(7): 3576-3589.
刘姝睿, 吴雪娥, 王远鹏. 纳米材料介导微生物胞外电子传递过程的研究进展[J]. 化工学报, 2021, 72(7): 3576-3589.
Add to citation manager EndNote|Ris|BibTeX
1 | Lovley D R. Electromicrobiology[J]. Annual Review of Microbiology, 2012, 66(1): 391-409. |
2 | Logan B E, Rossi R, Ragab A, et al. Electroactive microorganisms in bioelectrochemical systems[J]. Nature Reviews. Microbiology, 2019, 17(5): 307-319. |
3 | Lovley D R, Stolz J F, Nord G L, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism[J]. Nature, 1987, 330(6145): 252-254. |
4 | Butti S K, Velvizhi G, Sulonen M L K, et al. Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 462-476. |
5 | 章恒, 许玫英, 罗建中, 等. 沉积物微生物燃料电池中的微生物电子传递过程[J]. 中国科学: 技术科学, 2019, 49(12): 1461-1472. |
Zhang H, Xu M Y, Luo J Z, et al. Microbial electron transfer processes in sediment microbial fuel cells[J]. Scientia Sinica (Technologica), 2019, 49(12): 1461-1472. | |
6 | 徐静, 由紫暄, 张君奇, 等. 合成生物学方法改造电活性生物膜研究进展[J]. 化工学报, 2020, 71(9): 3950-3962. |
Xu J, You Z X, Zhang J Q, et al. Advances in engineering electroactive biofilms by synthetic biology approaches[J]. CIESC Journal, 2020, 71(9): 3950-3962. | |
7 | 刘向, 张君奇, 张保财, 等. 强化产电微生物与电极间电子传递速率的研究进展[J]. 生物工程学报, 2021, 37(2): 361-377. |
Liu X, Zhang J Q, Zhang B C, et al. Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface[J]. Chinese Journal of Biotechnology, 2021, 37(2): 361-377. | |
8 | Zhang P, Liu J, Qu Y P, et al. Nanomaterials for facilitating microbial extracellular electron transfer: recent progress and challenges[J]. Bioelectrochemistry, 2018, 123: 190-200. |
9 | Gralnick J A, Newman D K. Extracellular respiration[J]. Molecular Microbiology, 2007, 65(1): 1-11. |
10 | Fonseca B M, Paquete C M, Neto S E, et al. Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1[J]. The Biochemical Journal, 2013, 449(1): 101-108. |
11 | Ding M N, Shiu H Y, Li S L, et al. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter[J]. ACS Nano, 2016, 10(11): 9919-9926. |
12 | Sturm G, Richter K, Doetsch A, et al. A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime[J]. The ISME Journal, 2015, 9(8): 1802-1811. |
13 | Patil S A, Hägerhäll C, Gorton L. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems[J]. Bioanalytical Reviews, 2012, 4: 159-192. |
14 | Coursolle D, Gralnick J A. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1[J]. Molecular Microbiology, 2010, 77(4): 995-1008. |
15 | Shi L, Richardson D J, Wang Z M, et al. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer[J]. Environmental Microbiology Reports, 2009, 1(4): 220-227. |
16 | Zacharoff L, Chan C H, Bond D R. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens[J]. Bioelectrochemistry, 2016, 107: 7-13. |
17 | Liu Y, Fredrickson J K, Zachara J M, et al. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(Ⅲ) by Geobacter sulfurreducens PCA[J]. Frontiers in Microbiology, 2015, 6: 1075. |
18 | Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101. |
19 | Gorgel M, Ulstrup J J, Bøggild A, et al. High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis[J]. BMC Structural Biology, 2015, 15: 4. |
20 | El-Naggar M Y, Wanger G, Leung K M, et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(42): 18127-18131. |
21 | Liu X, Zhan J, Jing X Y, et al. A pilin chaperone required for the expression of electrically conductive Geobacter sulfurreducens pili[J]. Environmental Microbiology, 2019, 21(7): 2511-2522. |
22 | Pirbadian S, Barchinger S E, Leung K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12883-12888. |
23 | Malvankar N S, Yalcin S E, Tuominen M T, et al. Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy[J]. Nature Nanotechnology, 2014, 9(12): 1012-1017. |
24 | Glasser N R, Saunders S H, Newman D K. The colorful world of extracellular electron shuttles[J]. Annual Review of Microbiology, 2017, 71: 731-751. |
25 | 邓丽芳, 李芳柏, 周顺桂, 等. 克雷伯氏菌燃料电池的电子穿梭机制研究[J]. 科学通报, 2009, 54(19): 2983-2987. |
Deng L F, Li F B, Zhou S G, et al. A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells[J]. Chinese Science Bulletin, 2009, 54(19): 2983-2987. | |
26 | Canstein H V, Ogawa J, Shimizu S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied and Environmental Microbiology, 2008, 74(3): 615-623. |
27 | Watanabe K, Manefield M, Lee M, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6): 633-641. |
28 | Brutinel E D, Gralnick J A. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella[J]. Applied Microbiology and Biotechnology, 2012, 93(1): 41-48. |
29 | Covington E D, Gelbmann C B, Kotloski N J, et al. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis[J]. Molecular Microbiology, 2010, 78(2): 519-532. |
30 | Jiang J, Kappler A. Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling[J]. Environmental Science & Technology, 2008, 42(10): 3563-3569. |
31 | Li X M, Liu T X, Liu L, et al. Dependence of the electron transfer capacity on the kinetics of quinone-mediated Fe(Ⅲ) reduction by two iron/humic reducing bacteria[J]. RSC Advances, 2014, 4(5): 2284-2290. |
32 | Okamoto A, Hashimoto K, Nealson K H, et al. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7856-7861. |
33 | Ganesh I. Electrochemical conversion of carbon dioxide into renewable fuel chemicals—the role of nanomaterials and the commercialization[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1269-1297. |
34 | Chiranjeevi P, Patil S A. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies[J]. Biotechnology Advances, 2020, 39: 107468. |
35 | Sun J J, Zhao H Z, Yang Q Z, et al. A novel layer-by-layer self-assembled carbon nanotube-based anode: preparation, characterization, and application in microbial fuel cell[J]. Electrochimica Acta, 2010, 55(9): 3041-3047. |
36 | Liang P, Wang H Y, Xia X, et al. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells[J]. Biosensors and Bioelectronics, 2011, 26(6): 3000-3004. |
37 | You S J, Ma M, Wang W, et al. 3D macroporous nitrogen-enriched graphitic carbon scaffold for efficient bioelectricity generation in microbial fuel cells[J]. Advanced Energy Materials, 2017, 7(4): 1601364. |
38 | Song R B, Wu Y C, Lin Z Q, et al. Living and conducting: coating individual bacterial cells with in situ formed polypyrrole[J]. Angewandte Chemie International Edition, 2017, 56(35): 10516-10520. |
39 | Liu S R, Cai L F, Wang L Y, et al. Polydopamine coating on individual cells for enhanced extracellular electron transfer[J]. Chemical Communications (Cambridge, England), 2019, 55(71): 10535-10538. |
40 | Kang Y L, Ibrahim S, Pichiah S. Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application[J]. Bioresource Technology, 2015, 189: 364-369. |
41 | Li X M, Liu L, Liu T X, et al. Electron transfer capacity dependence of quinone-mediated Fe(Ⅲ) reduction and current generation by Klebsiella pneumoniae L17[J]. Chemosphere, 2013, 92(2): 218-224. |
42 | Liu F H, Rotaru A E, Shrestha P M, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10): 8982-8989. |
43 | Li Y X, Luo Q L, Li H, et al. Application of 2-hydroxy-1,4-naphthoquinone- graphene oxide (HNQ-GO) composite as recyclable catalyst to enhance Cr(VI) reduction by Shewanella xiamenensis[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(2): 446-454. |
44 | van der Zee F P, Cervantes F J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review[J]. Biotechnology Advances, 2009, 27(3): 256-277. |
45 | Bian R X, Jiang Y, Wang Y, et al. Highly boosted microbial extracellular electron transfer by semiconductor nanowire array with suitable energy level[J]. Advanced Functional Materials, 2018, 28(19): 1707408. |
46 | Chen Z, Zhang Y X, Luo Q L, et al. Maghemite (γ-Fe2O3) nanoparticles enhance dissimilatory ferrihydrite reduction by Geobacter sulfurreducens: impacts on iron mineralogical change and bacterial interactions[J]. Journal of Environmental Sciences, 2019, 78(4): 193-203. |
47 | Zhang Y X, Li H, Gong L B, et al. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems[J]. Journal of Environmental Sciences, 2017, 57: 329-337. |
48 | O'Loughlin E J. Effects of electron transfer mediators on the bioreduction of lepidocrocite (γ-FeOOH) by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2008, 42(18): 6876-6882. |
49 | Kondo K, Okamoto A, Hashimoto K, et al. Sulfur-mediated electron shuttling sustains microbial long-distance extracellular electron transfer with the aid of metallic iron sulfides[J]. Langmuir, 2015, 31(26): 7427-7434. |
50 | Wang W, You S J, Gong X B, et al. Bioinspired nanosucker array for enhancing bioelectricity generation in microbial fuel cells[J]. Advanced Materials, 2016, 28(2): 270-275. |
51 | Chen M, Zhou X F, Liu X, et al. Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles[J]. Biosensors and Bioelectronics, 2018, 108: 20-26. |
52 | Du J, Catania C, Bazan G C. Modification of abiotic-biotic interfaces with small molecules and nanomaterials for improved bioelectronics[J]. Chemistry of Materials, 2014, 26(1): 686-697. |
53 | Xie X, Zhao W T, Lee H R, et al. Enhancing the nanomaterial bio-interface by addition of mesoscale secondary features: crinkling of carbon nanotube films to create subcellular ridges[J]. ACS Nano, 2014, 8(12): 11958-11965. |
54 | Xie X, Criddle C, Cui Y. Design and fabrication of bioelectrodes for microbial bioelectrochemical systems[J]. Energy & Environmental Science, 2015, 8(12): 3418-3441. |
55 | Holder S L, Lee C H, Popuri S R. Simultaneous wastewater treatment and bioelectricity production in microbial fuel cells using cross-linked chitosan-graphene oxide mixed-matrix membranes[J]. Environmental Science and Pollution Research, 2017, 24(15): 13782-13796. |
56 | Ding C M, Lv M L, Zhu Y, et al. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4[J]. Angewandte Chemie International Edition, 2015, 54(5): 1466-1451. |
57 | Jia H R, Zhu Y X, Chen Z, et al. Cholesterol-assisted bacterial cell surface engineering for photodynamic inactivation of gram-positive and gram-negative bacteria[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 15943-15951. |
58 | Qiu J J, Wang D H, Geng H, et al. How oxygen-containing groups on graphene influence the antibacterial behaviors[J]. Advanced Materials Interfaces, 2017, 4(15): 1700228. |
59 | Wu P C, Chen H H, Chen S Y, et al. Graphene oxide conjugated with polymers: a study of culture condition to determine whether a bacterial growth stimulant or an antimicrobial agent?[J]. Journal of Nanobiotechnology, 2018, 16(1):1. |
60 | Ji Z, Zhang H, Liu H, et al. Cytoprotective metal-organic frameworks for anaerobic bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(42): 10582-10587. |
61 | Sakimoto K K, Wong A B, Yang P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
62 | Chen Z, Dong G W, Chen Y B, et al. Impacts of enhanced microbial-photoreductive and suppressed dark microbial reductive dissolution on the mobility of As and Fe in flooded tailing soils with zinc sulfide[J]. Chemical Engineering Journal, 2019, 372: 118-128. |
63 | Guo J L, Suástegui M, Sakimoto K K, et al. Light-driven fine chemical production in yeast biohybrids[J]. Science, 2018, 362(6416): 813-816. |
64 | Chen X Y, Feng Q Y, Cai Q H, et al. Mn3O4 nanozyme coating accelerates nitrate reduction and decreases N2O emission during photoelectrotrophic denitrification by Thiobacillus denitrificans-CdS[J]. Environmental Science & Technology, 2020, 54(17): 10820-10830. |
65 | Sakimoto K K, Kornienko N, Cestellos-Blanco S, et al. Physical biology of the materials-microorganism interface[J]. Journal of the American Chemical Society, 2018, 140(6): 1978-1985. |
66 | Li Y X, Chen Z, Shi Y Y, et al. Function of c-type cytochromes of Shewanella xiamenensis in enhanced anaerobic bioreduction of Cr(Ⅵ) by graphene oxide and graphene oxide/polyvinyl alcohol films[J]. Journal of Hazardous Materials, 2020, 387: 122018. |
67 | Zhao C E, Wang Y, Shi F J, et al. High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode[J]. Chemical Communications, 2013, 49(59): 6668-6670. |
68 | Du Q, An J K, Li J H, et al. Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells[J]. Journal of Power Sources, 2017, 343: 477-482. |
69 | Fang X, Kalathil S, Divitini G, et al. A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(9): 5074-5080. |
70 | Zou L, Qiao Y, Wu Z Y, et al. Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells[J]. Advanced Energy Materials, 2016, 6(4): 1501535. |
71 | Yong Y C, Yu Y Y, Zhang X H, et al. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm[J]. Angewandte Chemie International Edition, 2014, 53(17): 4480-4483. |
72 | Ma W D, Li H, Zhang W D, et al. TiO2 nanoparticles accelerate methanogenesis in mangrove wetlands sediment[J]. Science of the Total Environment, 2020, 713, 136602. |
73 | Kim J H, Lee M, Park C B. Polydopamine as a biomimetic electron gate for artificial photosynthesis[J]. Angewandte Chemie, 2014, 53(25): 6364-6368. |
74 | Wu X E, Zhao F, Rahunen N, et al. A role for microbial palladium nanoparticles in extracellular electron transfer[J]. Angewandte Chemie International Edition, 2011, 50(2): 427-430. |
75 | Ajo-Franklin C M, Noy A. Crossing over: nanostructures that move electrons and ions across cellular membranes[J]. Advanced Materials, 2015, 27(38): 5797-5804. |
76 | Kirchhofer N D, Rengert Z D, Dahlquist F W, et al. A ferrocene-based conjugated oligoelectrolyte catalyzes bacterial electrode respiration[J]. Chem, 2017, 2(2): 240-257. |
77 | Lu J, Zhang S, Gao S H, et al. New insights of the bacterial response to exposure of differently sized silver nanomaterials[J]. Water Research, 2020, 169: 115205. |
78 | Liu S R, Yi X F, Wu X E, et al. Internalized carbon dots for enhanced extracellular electron transfer in the dark and light[J]. Small, 2020, 16(44): 2004194. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[7] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[8] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[9] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[10] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[13] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[14] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[15] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||