CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3576-3589.DOI: 10.11949/0438-1157.20201839

• Reviews and monographs • Previous Articles     Next Articles

Progress in nanomaterials mediated microbial extracellular electron transfer

LIU Shurui(),WU Xue'e,WANG Yuanpeng()   

  1. Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2020-12-16 Revised:2021-03-24 Online:2021-07-05 Published:2021-07-05
  • Contact: WANG Yuanpeng

纳米材料介导微生物胞外电子传递过程的研究进展

刘姝睿(),吴雪娥,王远鹏()   

  1. 厦门大学化学化工学院化学工程与生物工程系,福建 厦门 361005
  • 通讯作者: 王远鹏
  • 作者简介:刘姝睿(1992—),女,博士研究生,hatty1108@126.com
  • 基金资助:
    国家自然科学基金项目(22038012);中央高校基本科研业务费专项资金(20720190001)

Abstract:

The process of microbial extracellular electron transfer (EET) is widespread in nature and has broad application prospects in energy utilization and environmental remediation. However, inefficient electron transfer has always been a key bottleneck in practical applications. Nanomaterials have unique properties such as surface effect, volume effect, quantum size, and macro-quantum tunneling effect. The combination of nanomaterials and electroactive microorganisms can achieve complementary advantages, which can shorten the charge transfer path and increase the rate of EET. This review introduces the pathways of EET, as well as the factors affecting the interface EET such as the electron transfer ability, redox potential, surface structure and biocompatibility of nanomaterials, with a focus on various strategies for constructing the interface between nanomaterials and electroactive microorganisms, and the applicability and limitations of these strategies are summarized. Finally, the future research direction of nanomaterials to enhance electroactive microorganism EET is prospected.

Key words: electroactive microorganism, extracellular electron transfer, nanomaterials, interface, biocatalysis

摘要:

微生物胞外电子传递(EET)过程在自然界中普遍存在,并且在能源利用和环境修复等方面具有广阔的应用前景,但是低效的电子传递一直是其在实际应用中的关键瓶颈。纳米材料具有独特的表面效应、体积效应、量子尺寸及宏观量子隧道效应等性质,引入纳米材料与电活性微生物相结合实现优势互补,可以缩短电荷转移路径,从而提高EET效率。本文综述了EET方式,以及纳米材料的电子转移能力、氧化还原电势、表面结构与性质、生物相容性及纳米材料-微生物的界面构筑对EET过程的影响,重点阐述了纳米材料与电活性微生物界面构筑的各种策略,并讨论了这些策略的适用性和局限性,最后展望了纳米材料强化电活性微生物EET的未来研究方向。

关键词: 电活性微生物, 胞外电子传递, 纳米材料, 界面, 生物催化

CLC Number: