CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 158-166.DOI: 10.11949/0438-1157.20200890
• Reviews and monographs • Previous Articles Next Articles
HUANG Jinpei1(),HUANG Dan2,WANG Fajun1,XU Jianhong1()
Received:
2020-07-06
Revised:
2020-08-20
Online:
2021-01-05
Published:
2021-01-05
Contact:
XU Jianhong
通讯作者:
徐建鸿
作者简介:
黄晋培(1994—),男,博士研究生,基金资助:
CLC Number:
HUANG Jinpei, HUANG Dan, WANG Fajun, XU Jianhong. Research progress of Hofmann rearrangement reaction[J]. CIESC Journal, 2021, 72(1): 158-166.
黄晋培, 黄丹, 王法军, 徐建鸿. 霍夫曼重排反应过程的研究进展[J]. 化工学报, 2021, 72(1): 158-166.
Add to citation manager EndNote|Ris|BibTeX
1 | Hofmann A V. Ueber die Einwirkung des Broms in alkalischer Lösung auf Amide [J]. Berichte Der Deutschen Chemischen Gesellschaft, 1881, 14(2): 2725-2736. |
2 | Hernández E, Vélez J M, Vlaar C P. Synthesis of 1,4-dihydro-benzo[d][1,3]oxazin-2-ones from phthalides via an aminolysis-Hofmann rearrangement protocol [J]. Tetrahedron Letters, 2007, 48(51): 8972-8975. |
3 | Yu C, Jiang Y, Liu B, et al. A facile synthesis of 2-oxazolidinones via Hofmann rearrangement mediated by bis(trifluoroacetoxy)iodobenzene [J]. Tetrahedron Letters, 2001, 42(8): 1449-1452. |
4 | Dehli J R, Gotor V. Dynamic kinetic resolution of 2-oxocycloalkanecarbonitriles: chemoenzymatic syntheses of optically active cyclic β- and γ-amino alcohols [J]. The Journal of Organic Chemistry, 2002, 67(19): 6816-6819. |
5 | Pearson C M, Fyfe J W B, Snaddon T N. A regio- and stereodivergent synthesis of homoallylic amines by a one-pot cooperative-catalysis-based allylic alkylation/Hofmann rearrangement strategy [J]. Angewandte Chemie International Edition, 2019, 58(31): 10521-10527. |
6 | Okamoto N, Miwa Y, Minami H, et al. Concise one-pot tandem synthesis of indoles and isoquinolines from amides [J]. Angewandte Chemie International Edition, 2009, 48(51): 9693-9696. |
7 | Zhang T Y, Stout J R, Keay J G, et al. Regioselective synthesis of 2-chloro-3-pyridinecarboxylates [J]. Tetrahedron, 1995, 51(48): 13177-13184. |
8 | Seki M, Shimizu T, Inubushi K. A novel synthesis of a key intermediate for (+)-biotin from l-aspartic acid [J]. Synthesis, 2002, 2002(3): 361-364. |
9 | Schultz A G, Wang A. First asymmetric synthesis of a hasubanan alkaloid. Total synthesis of (+)-cepharamine [J]. Journal of the American Chemical Society, 1998, 120(32): 8259-8260. |
10 | Caron S, Dugger R W, Ruggeri S G, et al. Large-scale oxidations in the pharmaceutical industry [J]. Chemical Reviews, 2006, 106(7): 2943-2989. |
11 | Evans D A, Scheidt K A, Downey C W. Synthesis of (-)-epibatidine [J]. Organic Letters, 2001, 3(19): 3009-3012. |
12 | Kimishima A, Umihara H, Mizoguchi A, et al. Synthesis of (-)-oxycodone [J]. Organic Letters, 2014, 16(23): 6244-6247. |
13 | Inai M, Goto T, Furuta T, et al. Stereocontrolled total synthesis of (-)-myriocin [J]. Tetrahedron: Asymmetry, 2008, 19(24): 2771-2773. |
14 | Tun M K M, Wüstmann D J, Herzon S B. A robust and scalable synthesis of the potent neuroprotective agent (-)-huperzine A [J]. Chemical Science, 2011, 2(11): 2251-2253. |
15 | Abrecht S, Adam J M, Bromberger U, et al. An efficient process for the manufacture of carmegliptin [J]. Organic Process Research & Development, 2011, 15(3): 503-514. |
16 | Greshock T J, Funk R L. An approach to the total synthesis of welwistatin [J]. Organic Letters, 2006, 8(12): 2643-2645. |
17 | Wang Y, Liu X, Deng L. Dual-function cinchona alkaloid catalysis: catalytic asymmetric tandem conjugate addition-protonation for the direct creation of nonadjacent stereocenters [J]. Journal of the American Chemical Society, 2006, 128(12): 3928-3930. |
18 | Poullennec K G, Romo D. Enantioselective total synthesis of (+)-dibromophakellstatin [J]. Journal of the American Chemical Society, 2003, 125(21): 6344-6345. |
19 | Vitola G, Buning D, Schumacher J, et al. Development of a novel immobilization method by using microgels to keep enzyme in hydrated microenvironment in porous hydrophobic membranes [J]. Macromol. Biosci., 2017, 17(5):1600381. |
20 | Dai Y, Pang H, Huang J, et al. Tailoring of ammonia reduced graphene oxide into amine functionalized graphene quantum dots through a Hofmann rearrangement [J]. RSC Advances, 2016, 6(41): 34514-34520. |
21 | Wang Z, Pelton R. Aminated thermoresponsive microgels prepared from the Hofmann rearrangement of amides without side reactions [J]. Langmuir, 2014, 30(23): 6763-6767. |
22 | Yu S, Ma M, Liu J, et al. Study on polyamide thin-film composite nanofiltration membrane by interfacial polymerization of polyvinylamine (PVAm) and isophthaloyl chloride (IPC) [J]. Journal of Membrane Science, 2011, 379(1/2): 164-173. |
23 | Pelton R. Polyvinylamine: a tool for engineering interfaces [J]. Langmuir, 2014, 30(51): 15373-15382. |
24 | Yamamoto Y, Sefton M V. Hofmann degradation of acrylamide copolymer: synthesis of amine functionalized thermoplastic hydrogel [J]. Journal of Applied Polymer Science, 1996, 61(2): 351-358. |
25 | Achari A E, Coqueret X, Lablache-Combier A, et al. Preparation of polyvinylamine from polyacrylamide: a reinvestigation of the Hofmann reaction [J]. Macromolecular Chemistry & Physics, 1993, 194(7): 1879-1891. |
26 | 杨晶晶, 唐炳涛, 张淑芬, 等. 低氨基含量聚丙烯酰胺-co-乙烯胺的可控合成 [J]. 化工学报, 2012, 63(3): 955-961. |
Yang J J, Tang B T, Zhang S F, et al. Controllable synthesis of poly (acrylamide-co-vinylamine) with low amino groups [J]. CIESC Journal, 2012, 63(3): 955-961. | |
27 | 叶盼盼, 郑土才, 李静观, 等. Hofmann重排反应的应用进展 [J]. 化工生产与技术, 2013, 20(3): 22-27. |
Ye P P, Zhen T C, Li J G, et al. Application advances of Hofmann rearrangement reactions [J]. Chemical Production and Technology, 2013, 20(3): 22-27. | |
28 | Wallis E S, Lane J F. The Hofmann reaction [J]. Organic Reactions, 2004, 3: 267-306. |
29 | Stieglitz J. The chemistry of diazo-compounds [J]. Journal of the American Chemical Society, 1908, 30(11): 1797-1798. |
30 | Aubé J, Fehl C, Liu R, et al. 6.15 Hofmann, Curtius, Schmidt, Lossen, and Related Reactions [M]//Comprehensive Organic Synthesis II. Elsevier, 2014: 598-635. |
31 | Scriven E F V, Turnbull K. Azides: their preparation and synthetic uses [J]. Chemical Reviews, 1988, 88(2): 297-368. |
32 | Bauer L, Exner O. The chemistry of hydroxamic acids and N-hydroxyimides [J]. Angewandte Chemie International Edition in English, 1974, 13(6): 376-384. |
33 | 胡跃飞,林国强. 现代有机反应第八卷 [M]. 北京: 化学工业出版社, 2013: 105-125. |
Hu Y F, Lin G Q. Modern Organic Reactions Vol. 8 [M]. Beijing: Chemical Industry Press, 2013: 105-125. | |
34 | Ochiai M, Miyamoto K, Hayashi S, et al. Hypervalent N-sulfonylimino-λ3-bromane: active nitrenoid species at ambient temperature under metal-free conditions [J]. Chemical Communications, 2010, 46(4): 511-521. |
35 | Verma R K, Ghosh S. A silicon controlled total synthesis of the antifungal agent (+)-preussin [J]. Chemical Communications, 1997, 17: 1601-1602. |
36 | Amato J S, Bagner C, Cvetovich R J, et al. Development of the Hofmann rearrangement of Nα-tosylasparagine through calorimetric and NMR analysis [J]. The Journal of Organic Chemistry, 1998, 63(25): 9533-9534. |
37 | Brown R, Bennet A, Slebocka-Tilk H. Recent perspectives concerning the mechanism of H3O+- and hydroxide-promoted amide hydrolysis [J]. Accounts of Chemical Research, 1992, 25(11): 481-488. |
38 | Antelo J, Arce F, Parajo M. Kinetic study of the formation of N‐chloramines [J]. International Journal of Chemical Kinetics, 1995, 27(7): 637-647. |
39 | Huang X, Keillor J W. Preparation of methyl carbamates via a modified Hofmann rearrangement [J]. Tetrahedron Letters, 1997, 38(3): 313-316. |
40 | Huang X, Seid M, Keillor J W. A mild and efficient modified Hofmann rearrangement [J]. Journal of Organic Chemistry, 1997, 62(21): 7495-7496. |
41 | Senanayake C H, Fredenburgh L E, Reamer R A, et al. Nature of N-bromosuccinimide in basic media: the true oxidizing species in the Hofmann rearrangement [J]. Journal of the American Chemical Society, 1994, 116(17): 7947-7948. |
42 | Borah A J, Phukan P. Efficient synthesis of methyl carbamate via Hofmann rearrangement in the presence of TsNBr2 [J]. Tetrahedron Letters, 2012, 53(24): 3035-3037. |
43 | Liu P, Wang Z, Hu X. Highly efficient synthesis of ureas and carbamates from amides by iodosylbenzene-induced Hofmann rearrangement [J]. European Journal of Organic Chemistry, 2012, 2012(10): 1994-2000. |
44 | Nishio Y, Yubata K, Wakai Y, et al. Preparation of a novel bromine complex and its application in organic synthesis [J]. Tetrahedron, 2019, 75(10): 1398-1405. |
45 | Debnath P. Recent advances in the Hofmann rearrangement and its application to natural product synthesis [J]. Current Organic Chemistry, 2020, 23(22): 2402-2435. |
46 | Katuri J V P, Nagarajan K. Hofmann rearrangement of primary carboxamides and cyclic imides using DCDMH and application to the synthesis of gabapentin and its potential peptide prodrugs [J]. Tetrahedron Letters, 2019, 60(7): 552-556. |
47 | Crane Z D, Nichols P J, Sammakia T, et al. Synthesis of methyl-1-(tert-butoxycarbonylamino)-2-vinylcyclopropanecarboxylate via a Hofmann rearrangement utilizing trichloroisocyanuric acid as an oxidant [J]. J. Org. Chem., 2011, 76(1): 277-280. |
48 | Yoshimura A, Luedtke M W, Zhdankin V V. (Tosylimino)phenyl-l3-iodane as a reagent for the synthesis of methyl carbamates via Hofmann rearrangement of aromatic and aliphatic carboxamides [J]. J. Org. Chem., 2012, 77(4): 2087-2091. |
49 | Gogoi P, Konwar D. An efficient modification of the Hofmann rearrangement: synthesis of methyl carbamates [J]. Tetrahedron Letters, 2007, 48(4): 531-533. |
50 | Ivanović M, Jevtić I, Došen-Mićović L, et al. Hofmann rearrangement of carboxamides mediated by N-bromoacetamide [J]. Synthesis, 2016, 48(10): 1550-1560. |
51 | Miyamoto K, Sakai Y, Goda S, et al. A catalytic version of hypervalent aryl-λ3-iodane-induced Hofmann rearrangement of primary carboxamides: iodobenzene as an organocatalyst and m-chloroperbenzoic acid as a terminal oxidant [J]. Chemical Communications, 2012, 48(7): 982-984. |
52 | Moriyama K, Ishida K, Togo H. Effect of catalytic alkali metal bromide on Hofmann-type rearrangement of imides [J]. Chem. Commun. (Camb.), 2012, 48(68): 8574-8576. |
53 | Yoshimura A, Middleton K R, Luedtke M W, et al. Hypervalent iodine catalyzed Hofmann rearrangement of carboxamides using oxone as terminal oxidant [J]. J. Org. Chem., 2012, 77(24): 11399-11404. |
54 | Muthyala M K, Velisetti K, Parang K, et al. Advances in functionalized ionic liquids as reagents and scavengers in organic synthesis [J]. Current Organic Chemistry, 2014, 18(19): 2530-2554. |
55 | Pârvulescu V I, Hardacre C. Catalysis in ionic liquids [J]. Chemical Reviews, 2007, 107(6): 2615-2665. |
56 | Hallett J P, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2 [J]. Chemical Reviews, 2011, 111(5): 3508-3576. |
57 | Iinuma M, Moriyama K, Togo H. Various oxidative reactions with novel ion-supported (diacetoxyiodo)benzenes [J]. Tetrahedron, 2013, 69(14): 2961-2970. |
58 | Das S, Banik R, Kumar B, et al. A green approach for organic transformations using microwave reactor [J]. Current Organic Synthesis, 2019, 16(5): 730-764. |
59 | Das S K. Application of microwave irradiation in the synthesis of carbohydrates [J]. Synlett, 2004, 2004(6): 915-932. |
60 | Takkellapati S R. Microwave-assisted chemical transformations [J]. Current Organic Chemistry, 2013, 17(20): 2305-2322. |
61 | Miranda L S M, da Silva T R, Crespo L T, et al. TBCA mediated microwave-assisted Hofmann rearrangement [J]. Tetrahedron Letters, 2011, 52(14): 1639-1640. |
62 | Francke R, Little R D. Redox catalysis in organic electrosynthesis: basic principles and recent developments [J]. Chem. Soc. Rev., 2014, 43(8): 2492-2521. |
63 | Horn E J, Rosen B R, Baran P S. Synthetic organic electrochemistry: an enabling and innately sustainable method [J]. ACS Central Science, 2016, 2(5): 302-308. |
64 | Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance [J]. Chemical Reviews, 2017, 117(21): 13230-13319. |
65 | Matsumura Y, Maki T, Satoh Y. Electrochemically induced Hofmann rearrangement [J]. Tetrahedron Letters, 1997, 38(51): 8879-8882. |
66 | Matsumura Y, Satoh Y, Maki T, et al. The electrochemically induced Hofmann rearrangement and its comparison with the classic Hofmann rearrangement [J]. Electrochimica Acta, 2000, 45(18): 3011-3020. |
67 | Li L, Xue M, Yan X, et al. Electrochemical Hofmann rearrangement mediated by NaBr: practical access to bioactive carbamates [J]. Org. Biomol. Chem., 2018, 16(25): 4615-4618. |
68 | Plutschack M B, Pieber B U, Gilmore K, et al. The Hitchhiker's guide to flow chemistry [J]. Chemical Reviews, 2017, 117(18): 11796-11893. |
69 | Hessel V, Cortese B, de Croon M. Novel process windows—concept, proposition and evaluation methodology, and intensified superheated processing [J]. Chemical Engineering Science, 2011, 66(7): 1426-1448. |
70 | Hessel V. Design and Engineering of Microreactor and Smart-scaled Flow Processes [M]. Multidisciplinary Digital Publishing Institute,2015: 1-3. |
71 | Movsisyan M, Delbeke E, Berton J, et al. Taming hazardous chemistry by continuous flow technology [J]. Chemical Society Reviews, 2016, 45(18): 4892-4928. |
72 | Plouffe P, Macchi A, Roberge D M. From batch to continuous chemical synthesis — a toolbox approach [J]. Organic Process Research & Development, 2014, 18(11): 1286-1294. |
73 | Roberge D M, Ducry L, Bieler N, et al. Microreactor technology: a revolution for the fine chemical and pharmaceutical industries? [J]. Chemical Engineering & Technology, 2005, 28(3): 318-323. |
74 | Yoshida J I, Kim H, Nagaki A. “Impossible” chemistries based on flow and micro [J]. Journal of Flow Chemistry, 2017, 7(3): 60-64. |
75 | Palmieri A, Ley S V, Hammond K, et al. A microfluidic flow chemistry platform for organic synthesis: the Hofmann rearrangement [J]. Tetrahedron Letters, 2009, 50(26): 3287-3289. |
76 | Huang J P, Sang F N, Luo G S, et al. Continuous synthesis of Gabapentin with a microreaction system [J]. Chemical Engineering Science, 2017, 173: 507-513. |
77 | Huang J, Geng Y, Wang Y, et al. Efficient production of cyclopropylamine by a continuous-flow microreaction system [J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16389-16394. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[5] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[6] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[9] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[12] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[13] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[14] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[15] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||