CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5774-5784.DOI: 10.11949/0438-1157.20200691
• Energy and environmental engineering • Previous Articles Next Articles
TIAN Yeshun(),REN Wen,WANG Guoxiu,SUN Shuang,ZHOU Ping,WANG Wenlong,SONG Zhanlong,ZHAO Xiqiang()
Received:
2020-06-02
Revised:
2020-07-18
Online:
2020-12-05
Published:
2020-12-05
Contact:
ZHAO Xiqiang
田叶顺(),任文,王国袖,孙爽,周萍,王文龙,宋占龙,赵希强()
通讯作者:
赵希强
作者简介:
田叶顺(1991—),男,博士研究生,基金资助:
CLC Number:
TIAN Yeshun,REN Wen,WANG Guoxiu,SUN Shuang,ZHOU Ping,WANG Wenlong,SONG Zhanlong,ZHAO Xiqiang. Study on preparation and desulfurization characteristics of biomass activated carbon by microwave heating CO2 activation method[J]. CIESC Journal, 2020, 71(12): 5774-5784.
田叶顺,任文,王国袖,孙爽,周萍,王文龙,宋占龙,赵希强. 微波加热CO2活化法制备生物质活性炭及其脱硫性能研究[J]. 化工学报, 2020, 71(12): 5774-5784.
Add to citation manager EndNote|Ris|BibTeX
工业分析/%(mass) | 元素分析/%(mass) | ||||||
---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | C | H | O | N |
12.1 | 2.9 | 68.7 | 16.2 | 44.3 | 6.2 | 43.8 | 2.5 |
Table 1 Industrial and elemental analysis of soybean straw
工业分析/%(mass) | 元素分析/%(mass) | ||||||
---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | C | H | O | N |
12.1 | 2.9 | 68.7 | 16.2 | 44.3 | 6.2 | 43.8 | 2.5 |
比表面积/ (m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm | SO2饱和吸附量/ (mg/g) |
---|---|---|---|
110.14 | 57.36 | 3.51 | 34.10 |
Table 2 Characteristics of pyrolytic carbon
比表面积/ (m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm | SO2饱和吸附量/ (mg/g) |
---|---|---|---|
110.14 | 57.36 | 3.51 | 34.10 |
水平 | 因素 | ||
---|---|---|---|
A:微波功率/W | B:活化时间/min | C:CO2流量/(L/min) | |
1 | 300 | 20 | 0.10 |
2 | 500 | 30 | 0.15 |
3 | 700 | 40 | 0.20 |
Table 3 Activation orthogonal experimental factors and horizontal design
水平 | 因素 | ||
---|---|---|---|
A:微波功率/W | B:活化时间/min | C:CO2流量/(L/min) | |
1 | 300 | 20 | 0.10 |
2 | 500 | 30 | 0.15 |
3 | 700 | 40 | 0.20 |
序号 | 因素 | 目标函数: SO2饱和吸附量/(mg/g) | ||
---|---|---|---|---|
A: 微波功率/W | B: 活化时间/min | C: CO2流量/ (L/min) | ||
1 | 300 | 20 | 0.10 | 50.21 |
2 | 300 | 30 | 0.15 | 57.83 |
3 | 300 | 40 | 0.20 | 79.69 |
4 | 500 | 20 | 0.15 | 87.70 |
5 | 500 | 30 | 0.20 | 75.40 |
6 | 500 | 40 | 0.10 | 83 |
7 | 700 | 20 | 0.20 | 68.66 |
8 | 700 | 30 | 0.10 | 41.93 |
9 | 700 | 40 | 0.15 | 51.58 |
K1 | 184.73 | 206.57 | 175.14 | Σ=596.0 |
K2 | 162.17 | 175.16 | 197.11 | |
K3 | 246.1 | 214.27 | 223.75 | |
61.58 | 68.86 | 58.38 | ||
54.06 | 58.39 | 65.70 | ||
82.03 | 71.42 | 74.58 | ||
优水平 | A3 | B3 | C3 | |
Rj | 27.97 | 13.03 | 16.2 | |
因素主次 | A、C、B |
Table 4 The orthogonal experimental results
序号 | 因素 | 目标函数: SO2饱和吸附量/(mg/g) | ||
---|---|---|---|---|
A: 微波功率/W | B: 活化时间/min | C: CO2流量/ (L/min) | ||
1 | 300 | 20 | 0.10 | 50.21 |
2 | 300 | 30 | 0.15 | 57.83 |
3 | 300 | 40 | 0.20 | 79.69 |
4 | 500 | 20 | 0.15 | 87.70 |
5 | 500 | 30 | 0.20 | 75.40 |
6 | 500 | 40 | 0.10 | 83 |
7 | 700 | 20 | 0.20 | 68.66 |
8 | 700 | 30 | 0.10 | 41.93 |
9 | 700 | 40 | 0.15 | 51.58 |
K1 | 184.73 | 206.57 | 175.14 | Σ=596.0 |
K2 | 162.17 | 175.16 | 197.11 | |
K3 | 246.1 | 214.27 | 223.75 | |
61.58 | 68.86 | 58.38 | ||
54.06 | 58.39 | 65.70 | ||
82.03 | 71.42 | 74.58 | ||
优水平 | A3 | B3 | C3 | |
Rj | 27.97 | 13.03 | 16.2 | |
因素主次 | A、C、B |
微波功率/W | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
100 | 114.54 | 101.03 | 3.13 |
300 | 205.06 | 160.45 | 2.58 |
500 | 247.26 | 177.60 | 2.49 |
700 | 291.99 | 191.69 | 2.43 |
900 | 355.29 | 251.43 | 2.22 |
Table 5 Pore structure of activated carbon under different microwave powers
微波功率/W | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
100 | 114.54 | 101.03 | 3.13 |
300 | 205.06 | 160.45 | 2.58 |
500 | 247.26 | 177.60 | 2.49 |
700 | 291.99 | 191.69 | 2.43 |
900 | 355.29 | 251.43 | 2.22 |
CO2流量/(L/min) | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
0.05 | 308.48 | 208.41 | 2.24 |
0.10 | 428.51 | 306.34 | 2.03 |
0.15 | 326.68 | 211.26 | 2.23 |
0.20 | 291.99 | 191.69 | 2.43 |
0.25 | 229.13 | 155.32 | 2.48 |
Table 6 Pore structure of activated carbon under different CO2 flow rates
CO2流量/(L/min) | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
0.05 | 308.48 | 208.41 | 2.24 |
0.10 | 428.51 | 306.34 | 2.03 |
0.15 | 326.68 | 211.26 | 2.23 |
0.20 | 291.99 | 191.69 | 2.43 |
0.25 | 229.13 | 155.32 | 2.48 |
活化时间/min | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
10 | 406.11 | 312.93 | 2.15 |
20 | 431.53 | 330.16 | 1.91 |
30 | 427.17 | 338.94 | 2.04 |
40 | 291.99 | 191.69 | 2.43 |
50 | 239.09 | 164.40 | 2.47 |
Table 7 Pore structure of activated carbon under different activation time
活化时间/min | 比表面积/(m2/g) | 微孔比表面积/ (m2/g) | 平均孔径/nm |
---|---|---|---|
10 | 406.11 | 312.93 | 2.15 |
20 | 431.53 | 330.16 | 1.91 |
30 | 427.17 | 338.94 | 2.04 |
40 | 291.99 | 191.69 | 2.43 |
50 | 239.09 | 164.40 | 2.47 |
1 | 赵雪, 程茜, 侯俊先.脱硫脱硝行业2017年发展综述[J].中国环保产业, 2018, (7): 10-24. |
Zhao X, Cheng Q, Hou J X. Development report on desulfurization and denitration industry in 2017 [J]. China Environmental Protection Industry, 2018, (7):10-24. | |
2 | Ben B Z, Yun Q L, Yue Y Y. Progress in preparation of activated carbon and its activation mechanism [J]. Modern Chemical Industry, 2014, 34(3): 34-39. |
3 | Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production—a review[J]. Renewable & Sustainable Energy Reviews, 2007, 11(9): 1966-2005. |
4 | 李艳鹰. 生物质活性炭负载零价铁纳米晶簇直接催化还原NO [J]. 化工学报, 2019, 70(3): 1111-1119. |
Li Y Y. Biomass activated carbon loaded with zero-valent iron nanocrystal clusters for direct catalytic reduction of NO [J]. CIESC Journal, 2019, 70(3): 1111-1119. | |
5 | 郭晓娜. 氮掺杂活性炭材料的制备及性能研究 [D]. 贵阳: 贵州大学, 2016. |
Guo X N. Preparation and properties of nitrogen-doped activated carbon materials [D]. Guiyang: Guizhou University, 2016. | |
6 | 王维竹, 刘勇军, 范武波, 等. 活性炭纤维改性表面官能团脱硫作用[J].化工新型材料, 2014, 42(4): 182-184. |
Wang W Z, Liu Y J, Fan W B, et al. Desulfurization of surface functional groups for modification of activated carbon fiber [J]. New Chemical Materials, 2014, 42(4): 182-184. | |
7 | 杨丽娟. 生物质活性炭的制备及应用发展研究 [J]. 黑龙江科学, 2018, 9(18): 44-45. |
Yang L J. Study on preparation and application development of biomass activated carbon [J]. Heilongjiang Science, 2018, 9(18): 44-45. | |
8 | Zhang K, Cheung W, Valix M. Roles of physical and chemical properties of activated carbon in the adsorption of lead ions[J]. Chemosphere, 2005, 60(8): 1129-1140. |
9 | 莫柳珍, 廖炳权, 黄向阳, 等. 甘蔗渣活性炭制备研究进展[J]. 广西糖业, 2015, (1): 31-35. |
Mo L Z, Liao B Q, Huang X Y, et al. Research progress in preparation of activated carbon from bagasse [J]. Guangxi Sugarcane & Canesugar, 2015, (1): 31-35. | |
10 | Arenas E, Chejne F. The effect of the activating agent and temperature on the porosity development of physically activated coal chars [J]. Carbon, 2004, 42(12): 2451-2455. |
11 | Guo J, Lua A C. Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants [J]. Materials Letters, 2002, 55(5): 334-339. |
12 | Yang K S, Yoon Y J, Lee M S, et al. Further carbonization of anisotropic and isotropic pitch-based carbons by microwave irradiation [J]. Carbon, 2002, 40(6): 897-903. |
13 | 王超前, 王文龙, 李哲, 等. 基于微波诱导定向加热的污泥新型热解方法能耗分析 [J]. 化工学报, 2019, 70: 168-176. |
Wang C Q Wang W L, Li Z, et al. Energy consumption analysis of novel pyrolysis method of sewage sludge based on microwave-induced target-oriented heating [J]. CIESC Journal, 2019, 70: 168-176. | |
14 | 樊希安, 彭金辉, 秦文峰, 等. 微波辐射处理竹节废料制备活性炭研究 [J]. 林产化学与工业, 2003, (3): 56-60. |
Fan X A, Peng J H, Qin W F, et al. Research on preparation of activated carbon from bamboo knot by microwave radiation [J]. Chemistry and Industry of Forest Products, 2003, (3): 56-60. | |
15 | Georgin J, Dotto G L, Mazutti M A, et al. Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions [J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 266-275. |
16 | 潘能婷, 苏展军, 莫家乐, 等. 新型微波适应型复合活性炭的研制及其微波再生性能 [J]. 化工学报, 2011, 62(1): 111-118. |
Pan N T, Su Z J, Mo J L, et al. Preparation of novel composite activated carbon with high applicability to microwave and its regeneration under microwave radiation [J]. CIESC Journal, 2011, 62(1): 111-118. | |
17 | Ravikovitch P I, Neimark A V. Density functional theory model of adsorption on amorphous and microporous silica materials [J]. Langmuir the ACS Journal of Surfaces & Colloids, 2006, 22(26): 11171-11179. |
18 | 张振. 粉状活性半焦的快速制备过程及SO2吸附特性研究 [D]. 济南: 山东大学, 2016. |
Zhang Z. Study on fast preparation of powdered active semi-coke and characteristics of SO2 adsorption [D]. Jinan: Shandong University, 2016. | |
19 | Tsuji K, Shiraishi I. Combined desulfurization, denitrification and reduction of air toxics using activated coke(1): Activity of activated coke [J]. Fuel, 1997, 76(6): 549-553. |
20 | 李兰廷.活性焦脱硫脱硝的机理研究——烟气组成的影响[J].煤炭学报, 2010, 35(S1): 185-189. |
Li L T. Mechanism of removal of SO2 and NO on activated coke: effect of component of flue gas on activated coke [J]. Journal of China Coal Society, 2010, 35(S1): 185-189. | |
21 | 张守玉, 朱廷玉, 杨之媛, 等. 煤制活性焦用于脱除烟道气中的SO2 [J]. 燃烧科学与技术, 2002, 8(1): 38-43. |
Zhang S Y, Zhu T Y, Yang Z Y, et al. Application of active coke derived from coal for SO2-removal from flue gas [J]. Journal of Combustion Science and Technology, 2002, 8(1): 38-43. | |
22 | 刘珂. 煤粉快速热解制备粉状活性焦及副产热解气的实验研究[D]. 济南: 山东大学, 2017. |
Liu K. Experimental study on preparation of powder activated coke and by-product pyrolysis gas by rapid pyrolysis of pulverized coal [D]. Jinan: Shandong University, 2017. | |
23 | Chen G, Andries J, Luo Z, et al. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects [J]. Energy Conversion & Management, 2003, 44(11): 1875-1884. |
24 | Onay O, Kockar O M. Slow, fast and flash pyrolysis of rapeseed [J]. Renewable Energy, 2003, 28(15): 2417-2433. |
25 | Rong Y, Yang H, Chin T, et al. Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes [J]. Combustion & Flame, 2005, 142(1): 24-32. |
26 | 郝博. 核桃壳废弃物流态化物理活化法制备活性炭的研究 [D]. 天津: 天津科技大学, 2014. |
Hao B. Preparation of activated carbon from walnut shell wastes by physical activation in a fluidized bed reactor [D]. Tianjin: Tianjin University of Science and Technology, 2014. | |
27 | 杨坤彬. 物理活化法制备椰壳基活性炭及其孔结构演变 [D]. 昆明: 昆明理工大学, 2010. |
Yang K B. Preparation of coconut shell-based activated carbon by physical activation and its pore structure evolution [D]. Kunming: Kunming University of Science and Technology, 2010. | |
28 | 夏洪应, 彭金辉, 张利波, 等. 微波辐射二氧化碳法制备烟秆基颗粒活性炭[J].煤炭转化, 2006, (1): 81-84. |
Xia H Y, Peng J H, Zhang L B, et al. Preparation of granular activated carbon from tobacco stems by microwave irradiation-carbon dioxide [J]. Coal Conversion, 2006, (1): 81-84. | |
29 | Guo J, Lua A C. Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation [J]. Carbon, 2000, 38(14): 1985-1993. |
30 | 张晓鸿, 詹昊, 阴秀丽, 等. 富氮生物质原料热解过程中NOx前驱物释放特性研究 [J]. 燃料化学学报, 2016, 44(12): 1464-1472. |
Zhang X H, Zhan H, Yin X L, et al. Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass [J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1464-1472. | |
31 | Ren Q, Zhao C, Chen X, et al. NOx and NO precursors (NH and HCN) from biomass pyrolysis: co-pyrolysis of amino acids and cellulose, hemicellulose and lignin [J]. Proceedings of the Combustion Institute, 2011, 33(2): 1715-1722. |
32 | Hansson K M, Åmand L E, Habermann A, et al. Pyrolysis of poly-L-leucine under combustion-like conditions [J]. Fuel, 2003, 82(6): 653-660. |
33 | 唐晓帆. 基于石墨烯探究官能团对SO2吸附过程的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2015. |
Tang X F. Exploring the effects of functional groups on graphene materials on the adsorptional process of SO2 [D]. Harbin: Harbin Institute of Technology, 2015. | |
34 | 张香兰, 徐德平. 活性半焦的制备: 性能与烟气脱硫机理 [M]. 北京: 化学工业出版社, 2012: 36. |
Zhang X L, Xu D P. Preparation of Activated Semi-Coke: Performance and Mechanism of Flue Gas Desulfurization [M]. Beijing: Chemical Industry Press, 2012: 36. | |
35 | 李开喜, 凌立成, 刘郎, 等. SO2在含氮沥青基活性炭纤维上的脱除 (Ⅰ): 含氮沥青基活性炭纤维的脱硫能力研究 [J]. 新型炭材料, 1998, 13(2): 37-42. |
Li K X, Ling L C, Liu L, et al. Removal of SO2 over nitrogen-containing pitch based activated carbon fiber (Ⅰ): Studies on desulfurization abilities of nitrogen-containing activated carbon fiber [J]. New Carbon Materials 1998, 13(2): 37-42. | |
36 | Xu L, Guo J, Jin F, et al. Removal of SO2 from O2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3 [J]. Chemosphere, 2006, 62(5): 823-826. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[3] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[4] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[5] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[6] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[7] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[8] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[9] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[10] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[11] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[12] | Pei WANG, Rongkuo WEI. Thermal-mass nonequilibrium model for water splitting hydrogen production by solar thermochemical cycle of porous cerium oxide [J]. CIESC Journal, 2022, 73(7): 2885-2894. |
[13] | Wenxuan BAI, Jinxiang CHEN, Fen LIU, Jingcong ZHANG, Zhiping GU, Chengming XIONG, Wangjun SHI, Jiang YU. Metal-based ionic liquid wet oxidative desulfurization process: development and prospect [J]. CIESC Journal, 2022, 73(5): 1847-1862. |
[14] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
[15] | Yulun ZHANG, Changkun CHEN, Peng LEI. Experimental study on combined burning characteristics of soaked porous media sand bed under different combustible liquid layer heights [J]. CIESC Journal, 2022, 73(4): 1826-1833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||