CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1595-1605.DOI: 10.11949/0438-1157.20200936
• Process system engineering • Previous Articles Next Articles
AN Guanglu1(),LIU Yongzhong1,2,3,KANG Lixia1,2(
)
Received:
2020-07-13
Revised:
2020-08-25
Online:
2021-03-05
Published:
2021-03-05
Contact:
KANG Lixia
通讯作者:
康丽霞
作者简介:
安广禄(1997—),男,硕士研究生,基金资助:
CLC Number:
AN Guanglu, LIU Yongzhong, KANG Lixia. Optimal design of synthetic ammonia production system powered by renewable energy for seasonal demands of ammonia[J]. CIESC Journal, 2021, 72(3): 1595-1605.
安广禄, 刘永忠, 康丽霞. 适应季节性氨需求的可再生能源合成氨系统优化设计[J]. 化工学报, 2021, 72(3): 1595-1605.
组成单元 | 计算公式 | 操作费用因子 | |
---|---|---|---|
可再生能源发电单元 | 风机/(USD·kW-1) | 2000[ | 0.02[ |
化工生产单元 | PSA/(USD·kmol-1·h-1) | 0.05[ | |
PEM/(USD·kW-1) | 1500[ | 0.05[ | |
HB/(USD·kmol-1·h-1) | 0.05[ | ||
储能单元 | 氢气储罐/(USD·kmol-1) | 1600[ | — |
氮气储罐/(USD·kmol-1) | 4480[ | — | |
氨储罐/(USD·kmol-1) | 116[ | — | |
锂电池/(USD·kW·h-1) | 500[ | — |
Table 1 The capital cost and operational cost of units
组成单元 | 计算公式 | 操作费用因子 | |
---|---|---|---|
可再生能源发电单元 | 风机/(USD·kW-1) | 2000[ | 0.02[ |
化工生产单元 | PSA/(USD·kmol-1·h-1) | 0.05[ | |
PEM/(USD·kW-1) | 1500[ | 0.05[ | |
HB/(USD·kmol-1·h-1) | 0.05[ | ||
储能单元 | 氢气储罐/(USD·kmol-1) | 1600[ | — |
氮气储罐/(USD·kmol-1) | 4480[ | — | |
氨储罐/(USD·kmol-1) | 116[ | — | |
锂电池/(USD·kW·h-1) | 500[ | — |
场景 | 风机功率/MW | PSA/(kmol·h-1) | PEM/kW | HB/(kmol·h-1) | 电池/(kW·h) | 氮气储罐/kmol | 氢气储罐/kmol | 氨储罐/kmol |
---|---|---|---|---|---|---|---|---|
Case 1 | 18 | 9 | 5079 | 16 | 6335 | 6 | 681 | 160 |
Case 2 | 22 | 20 | 5971 | 23 | 7789 | 60 | 627 | 2342 |
Case 2/Case 1比率 | 1.22 | 2.22 | 1.18 | 1.44 | 1.23 | 10 | 0.92 | 14.64 |
Table 2 The optimal design of synthetic ammonia production system powered by renewable energy
场景 | 风机功率/MW | PSA/(kmol·h-1) | PEM/kW | HB/(kmol·h-1) | 电池/(kW·h) | 氮气储罐/kmol | 氢气储罐/kmol | 氨储罐/kmol |
---|---|---|---|---|---|---|---|---|
Case 1 | 18 | 9 | 5079 | 16 | 6335 | 6 | 681 | 160 |
Case 2 | 22 | 20 | 5971 | 23 | 7789 | 60 | 627 | 2342 |
Case 2/Case 1比率 | 1.22 | 2.22 | 1.18 | 1.44 | 1.23 | 10 | 0.92 | 14.64 |
1 | Zhang H, Wang L, van Herle J, et al. Techno-economic comparison of green ammonia production processes[J]. Applied Energy, 2020, 259: 114135. |
2 | Sánchez A, Gil L M, Martín M. Sustainable DMC production from CO2 and renewable ammonia and methanol[J]. Journal of CO2 Utilization, 2019, 33: 521-531. |
3 | Araújo A, Skogestad S. Control structure design for the ammonia synthesis process[J]. Computers & Chemical Engineering, 2008, 32(12): 2920-2932. |
4 | Xiang D, Zhou Y. Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process[J]. Applied Energy, 2018, 229: 1024-1034. |
5 | Cheema I I, Krewer U. Operating envelope of Haber-Bosch process design for power-to-ammonia[J]. RSC Advances, 2018, 8(61): 34926-34936. |
6 | Reese M, Marquart C, Malmali M, et al. Performance of a small scale Haber process[J]. Industrial & Engineering Chemistry Research, 2016, 55(13): 3742-3750. |
7 | Palys M J, Daoutidis P. Using hydrogen and ammonia for renewable energy storage: a geographically comprehensive techno-economic study[J]. Computers & Chemical Engineering, 2020, 136: 106785. |
8 | Service R F. Liquid sunshine[J]. Science, 2018, 361(6398): 120-123. |
9 | MacFarlane D R, Cherepanov P V, Choi J, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205. |
10 | Verleysen K, Coppitters D, Parente A, et al. How can power-to-ammonia be robust? Optimization of an ammonia synthesis plant powered by a wind turbine considering operational uncertainties[J]. Fuel, 2020, 266: 117049. |
11 | Palys M J, Kuznetsov A, Tallaksen J, et al. A novel system for ammonia-based sustainable energy and agriculture: concept and design optimization[J]. Chemical Engineering and Processing - Process Intensification, 2019, 140: 11-21. |
12 | Miura D, Tezuka T. A comparative study of ammonia energy systems as a future energy carrier, with particular reference to vehicle use in Japan[J]. Energy, 2014, 68: 428-436. |
13 | Mesfun S, Sanchez D L, Leduc S, et al. Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region[J]. Renewable Energy, 2017, 107: 361-372. |
14 | Rouwenhorst K H R, van der Ham A G J, Mul G, et al. Islanded ammonia power systems: technology review & conceptual process design[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109339. |
15 | Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
16 | Smith A R, Klosek J. A review of air separation technologies and their integration with energy conversion processes[J]. Fuel Processing Technology, 2001, 70(2): 115-134. |
17 | Nayak-Luke R, Bañares-Alcántara R, Wilkinson I. “Green” ammonia: impact of renewable energy intermittency on plant sizing and levelized cost of ammonia[J]. Industrial & Engineering Chemistry Research, 2018, 57(43): 14607-14616. |
18 | Demirhan C D, Tso W W, Powell J B, et al. Sustainable ammonia production through process synthesis and global optimization[J]. AIChE Journal, 2019, 65(7): e16498. |
19 | Sánchez A, Martín M. Optimal renewable production of ammonia from water and air[J]. Journal of Cleaner Production, 2018, 178: 325-342. |
20 | Allman A, Daoutidis P. Optimal scheduling for wind-powered ammonia generation: effects of key design parameters[J]. Chemical Engineering Research and Design, 2018, 131: 5-15. |
21 | Allman A, Palys M J, Daoutidis P. Scheduling-informed optimal design of systems with time-varying operation: a wind-powered ammonia case study[J]. AIChE Journal, 2019, 65(7): e16434. |
22 | 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142. |
Wang J, Kang L X, Liu Y Z. Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems[J]. CIESC Journal, 2020, 71(3): 1131-1142. | |
23 | Palys M J, McCormick A, Cussler E L, et al. Modeling and optimal design of absorbent enhanced ammonia synthesis[J]. Processes, 2018, 6(7): 91. |
24 | Gökçek M, Kale C. Optimal design of a hydrogen refuelling station (HRFS) powered by hybrid power system[J]. Energy Conversion and Management, 2018, 161: 215-224. |
25 | Schmidt O, Gambhir A, Staffell I, et al. Future cost and performance of water electrolysis: an expert elicitation study[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30470-30492. |
26 | Sarrias-Mena R, Fernández-Ramírez L M, García-Vázquez C A, et al. Electrolyzer models for hydrogen production from wind energy systems[J]. International Journal of Hydrogen Energy, 2015, 40(7): 2927-2938. |
27 | Papadopoulos V, Desmet J, Knockaert J, et al. Improving the utilization factor of a PEM electrolyzer powered by a 15 MW PV park by combining wind power and battery storage — feasibility study[J]. International Journal of Hydrogen Energy, 2018, 43(34): 16468-16478. |
28 | Deng Z, Jiang Y. Optimal sizing of wind-hydrogen system considering hydrogen demand and trading modes[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11527-11537. |
29 | Grüger F, Hoch O, Hartmann J, et al. Optimized electrolyzer operation: employing forecasts of wind energy availability, hydrogen demand, and electricity prices[J]. International Journal of Hydrogen Energy, 2019, 44(9): 4387-4397. |
30 | Xu X, Hu W H, Cao D, et al. Optimal operational strategy for an offgrid hybrid hydrogen/electricity refueling station powered by solar photovoltaics[J]. Journal of Power Sources, 2020, 451: 227810. |
31 | 韩晓娟, 张婳, 修晓青, 等. 配置梯次电池储能系统的快速充电站经济性评估[J]. 储能科学与技术, 2016, 5(4): 514-521. |
Han X J, Zhang H, Xiu X Q, et al. Economic evaluation of fast charging electric vehicle station with second-use batteries energy storage system[J]. Energy Storage Science and Technology, 2016, 5(4): 514-521. | |
32 | Jiang Y, Kang L, Liu Y. Impacts of supply-demand characteristics on optimal configuration of energy storage system with multiple types of batteries[J]. Chemical Engineering Transactions, 2019, 76: 1117-1122. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[12] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[13] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[14] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[15] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 562
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 783
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||