CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1400-1408.DOI: 10.11949/0438-1157.20200722
• Separation engineering • Previous Articles Next Articles
LU Zhibin1(),XIE Xing2,LU Sida2,HE Chang3,4(),ZHANG Bingjian3,4,CHEN Qinglin3,4
Received:
2020-06-08
Revised:
2020-09-01
Online:
2021-03-05
Published:
2021-03-05
Contact:
HE Chang
陆至彬1(),谢星2,鲁思达2,何畅3,4(),张冰剑3,4,陈清林3,4
通讯作者:
何畅
作者简介:
陆至彬(1998—),男,硕士研究生,基金资助:
CLC Number:
LU Zhibin, XIE Xing, LU Sida, HE Chang, ZHANG Bingjian, CHEN Qinglin. Surrogate model-based optimal design of multi-stage nanofiltration separation system for saline wastewater[J]. CIESC Journal, 2021, 72(3): 1400-1408.
陆至彬, 谢星, 鲁思达, 何畅, 张冰剑, 陈清林. 基于代理模型的含盐废水多级纳滤系统的过程优化设计[J]. 化工学报, 2021, 72(3): 1400-1408.
Add to citation manager EndNote|Ris|BibTeX
Parameter | Unit | Value | Ref. | |
---|---|---|---|---|
NF270 properties | Sm | m2 | 37.16 | [ |
rpore | nm | 0.43 | [ | |
?xe | μm | 1.5 | ||
εpore | — | 42.4 | [ | |
Xd | mol/m3 | fitting | [ | |
Other parameters | temperature, T | K | 298 | |
Di,∞ ( | m2/s | 1.065/2.031/1.344 | [ | |
ri ( | nm | 0.231/0.121/0.184 | [ | |
εb | — | 80.4 | [ |
Table 1 Key parameters of the mass transfer model for nanofiltration
Parameter | Unit | Value | Ref. | |
---|---|---|---|---|
NF270 properties | Sm | m2 | 37.16 | [ |
rpore | nm | 0.43 | [ | |
?xe | μm | 1.5 | ||
εpore | — | 42.4 | [ | |
Xd | mol/m3 | fitting | [ | |
Other parameters | temperature, T | K | 298 | |
Di,∞ ( | m2/s | 1.065/2.031/1.344 | [ | |
ri ( | nm | 0.231/0.121/0.184 | [ | |
εb | — | 80.4 | [ |
Parameter | Unit | Value | Ref. |
---|---|---|---|
minimum element pressure drop, ?Pdrop | bar | 0.05 | |
maximum element water recovery, re | — | 15% | ROSA |
maximum applied pressure per element, ?Pe | bar | 41 | [ |
maximum element feed flow rate, | m3/h | 13.85 | ROSA |
number of elements in each pressure vessel, Ne | — | 4 | |
fluid viscosity, μ | Pa?s | 0.936×10-3 | Aspen Plus |
high pressure pump efficiency, ηhp | — | 0.75 | [ |
booster pump efficiency, ηbp | — | 0.57 | [ |
circulating pump efficiency, ηcp | — | 0.8 | [ |
energy recovery device efficiency, ηERD | — | 0.9 | [ |
total feed rate of waste water, Qf | m3/h | 400 | |
pipeline fluid pressure, P1 | bar | 2.0 | [ |
Table 2 Key parameters and constraints used in optimization process
Parameter | Unit | Value | Ref. |
---|---|---|---|
minimum element pressure drop, ?Pdrop | bar | 0.05 | |
maximum element water recovery, re | — | 15% | ROSA |
maximum applied pressure per element, ?Pe | bar | 41 | [ |
maximum element feed flow rate, | m3/h | 13.85 | ROSA |
number of elements in each pressure vessel, Ne | — | 4 | |
fluid viscosity, μ | Pa?s | 0.936×10-3 | Aspen Plus |
high pressure pump efficiency, ηhp | — | 0.75 | [ |
booster pump efficiency, ηbp | — | 0.57 | [ |
circulating pump efficiency, ηcp | — | 0.8 | [ |
energy recovery device efficiency, ηERD | — | 0.9 | [ |
total feed rate of waste water, Qf | m3/h | 400 | |
pipeline fluid pressure, P1 | bar | 2.0 | [ |
Fig.3 Comparison of simulation data by DSPM-DE model and experiment data under various water fluxes (feed concentration: SO42- 80 mol/m3, Cl- 180 mol/m3)
θ=1 | θ=2 | |
---|---|---|
α=1 | -0.014436 | 0.022249 |
α=1 | -0.011062 | 0.002860 |
α=3 | — | — |
α=4 | -0.012763 | 0.003062 |
Table 3 First order coefficients of surrogate model for SO42- concentration in permeate
θ=1 | θ=2 | |
---|---|---|
α=1 | -0.014436 | 0.022249 |
α=1 | -0.011062 | 0.002860 |
α=3 | — | — |
α=4 | -0.012763 | 0.003062 |
θ=1, ω=1 | θ=1, ω=2 | θ=2, ω=1 | θ=2, ω=2 | |
---|---|---|---|---|
α=1, β=2 | 0.027319 | -0.000168 | -0.000341 | 0.000047 |
α=1, β=3 | — | — | -0.002461 | 0.000884 |
α=1, β=4 | 0.011366 | -0.002616 | -0.004330 | 0.000888 |
α=2, β=3 | — | — | -0.000704 | 0.000175 |
α=2, β=4 | 0.008873 | -0.002153 | 0.006755 | -0.001389 |
α=3, β=4 | — | — | -0.033619 | 0.007160 |
Table 4 Second order coefficients of surrogate model for SO42- concentration in permeate
θ=1, ω=1 | θ=1, ω=2 | θ=2, ω=1 | θ=2, ω=2 | |
---|---|---|---|---|
α=1, β=2 | 0.027319 | -0.000168 | -0.000341 | 0.000047 |
α=1, β=3 | — | — | -0.002461 | 0.000884 |
α=1, β=4 | 0.011366 | -0.002616 | -0.004330 | 0.000888 |
α=2, β=3 | — | — | -0.000704 | 0.000175 |
α=2, β=4 | 0.008873 | -0.002153 | 0.006755 | -0.001389 |
α=3, β=4 | — | — | -0.033619 | 0.007160 |
θ=1 | θ=2 | |
---|---|---|
α=1 | 21.073186 | -3.237781 |
α=2 | 82.290331 | 7.929830 |
α=3 | — | — |
α=4 | -11.560941 | 2.654041 |
Table 5 First order coefficients of surrogate model for Cl- concentration in permeate
θ=1 | θ=2 | |
---|---|---|
α=1 | 21.073186 | -3.237781 |
α=2 | 82.290331 | 7.929830 |
α=3 | — | — |
α=4 | -11.560941 | 2.654041 |
θ=1, ω=1 | θ=1, ω=2 | θ=2, ω=1 | θ=2, ω=2 | |
---|---|---|---|---|
α=1, β=2 | 9.617871 | 0.110605 | 0.163656 | -0.031836 |
α=1, β=3 | — | — | 1.071423 | -0.169995 |
α=1, β=4 | -9.937840 | 1.888694 | 2.622338 | -0.449131 |
α=2, β=3 | — | — | -2.578999 | 0.374763 |
α=2, β=4 | -45.992975 | 8.506330 | 4.323250 | -1.123688 |
α=3, β=4 | — | — | -9.240002 | 1.694438 |
Table 6 Second order coefficients of surrogate model for Cl- concentration in permeate
θ=1, ω=1 | θ=1, ω=2 | θ=2, ω=1 | θ=2, ω=2 | |
---|---|---|---|---|
α=1, β=2 | 9.617871 | 0.110605 | 0.163656 | -0.031836 |
α=1, β=3 | — | — | 1.071423 | -0.169995 |
α=1, β=4 | -9.937840 | 1.888694 | 2.622338 | -0.449131 |
α=2, β=3 | — | — | -2.578999 | 0.374763 |
α=2, β=4 | -45.992975 | 8.506330 | 4.323250 | -1.123688 |
α=3, β=4 | — | — | -9.240002 | 1.694438 |
Fig.6 The optimal unit operating pressures in different stage with varied [Cl-]/[SO42-] (s1, s2, s3 represent the first, second and third unit of system)
24 | Wang S H, Kang L W, Zhang B J, et al. Energy minimization in hybrid desalination system of reverse osmosis and pressure retarded osmosis[J]. CIESC Journal, 2019, 70(2): 617-624. |
25 | Wang S H, Zhu Q P, He C, et al. Model-based optimization and comparative analysis of open-loop and closed-loop RO-PRO desalination systems[J]. Desalination, 2018, 446: 83-93. |
26 | DuPont de Nemours, Inc. DOW FilmTec™ NF270-400/34i[EB/OL]. [2020-03-30]. . |
27 | Oatley D L, Llenas L, Pérez R, et al. Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation[J]. Advances in Colloid and Interface Science, 2012, 173: 1-11. |
28 | Déon S, Dutournié P, Limousy L, et al. Transport of salt mixtures through nanofiltration membranes: numerical identification of electric and dielectric contributions[J]. Separation and Purification Technology, 2009, 69(3): 225-233. |
29 | Oatley D L, Llenas L, Aljohani N H M, et al. Investigation of the dielectric properties of nanofiltration membranes[J]. Desalination, 2013, 315: 100-106. |
30 | Escoda A, Déon S, Fievet P. Assessment of dielectric contribution in the modeling of multi-ionic transport through nanofiltration membranes[J]. Journal of Membrane Science, 2011, 378(1/2): 214-223. |
31 | Li K, Ma W C, Han H J, et al. Selective recovery of salt from coal gasification brine by nanofiltration membranes[J]. Journal of Environmental Management, 2018, 223: 306-313. |
32 | Kim J E, Phuntsho S, Chekli L, et al. Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water[J]. Desalination, 2018, 429: 96-104. |
33 | DuPont de Nemours, Inc. What is the MWCO of FilmTec™ NF90 and NF270 reverse osmosis elements[EB/OL]. [2020-03-30]. . |
1 | Huang L, Wang D, He C L, et al. Industrial wastewater desalination under uncertainty in coal-chemical eco-industrial parks[J]. Resources Conservation and Recycling, 2019, 145: 370-378. |
2 | Zhu Q P, Zhang B J, Chen Q L, et al. Optimal synthesis of water networks for addressing high-concentration wastewater in coal-based chemical plants[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10792-10805. |
3 | 刘晓鹏. 煤化工浓盐水蒸发结晶分离工业盐的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
Liu X P. Research on the experiment of separating industrial salt from coal chemical brine by evaporation and crystallization[D]. Harbin: Harbin Institute of Technology, 2017. | |
4 | 韩洪军, 李琨, 徐春艳, 等. 现代煤化工废水近零排放技术难点及展望[J]. 工业水处理, 2019, 39(8): 1-5. |
Han H, Li K, Xu C, et al. Status and prospects of near zero discharge technology for modern coal chemical industry wastewater[J]. Industrial Water Treatment, 2019, 39(8): 1-5. | |
5 | 熊日华, 何灿, 马瑞, 等. 高盐废水分盐结晶工艺及其技术经济分析[J]. 煤炭科学技术, 2018, 46(9): 37-43. |
Xiong R, He C, Ma R, et al. Process introduction and techno-economic analysis on pure salt recovery crystallization for high salinity wastewater[J]. Coal Science and Technology, 2018, 46(9): 37-43. | |
6 | Déon S, Dutournié P, Bourseau P. Modeling nanofiltration with Nernst-Planck approach and polarization layer[J]. AIChE Journal, 2007, 53(8): 1952-1969. |
7 | Déon S, Dutournié P, Limousy L, et al. The two-dimensional pore and polarization transport model to describe mixtures separation by nanofiltration: model validation[J]. AIChE Journal, 2011, 57(4): 985-995. |
8 | Ortiz-Albo P, Ibañez R, Urtiaga A, et al. Phenomenological prediction of desalination brines nanofiltration through the indirect determination of zeta potential[J]. Separation and Purification Technology, 2019, 210: 746-753. |
9 | Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. |
10 | Bowen W R, Welfoot J S. Modelling the performance of membrane nanofiltration—critical assessment and model development[J]. Chemical Engineering Science, 2002, 57(7): 1121-1137. |
11 | Geraldes V, Brites Alves A M. Computer program for simulation of mass transport in nanofiltration membranes[J]. Journal of Membrane Science, 2008, 321(2): 172-182. |
12 | Pérez-González A, Ibáñez R, Gómez P, et al. Nanofiltration separation of polyvalent and monovalent anions in desalination brines[J]. Journal of Membrane Science, 2015, 473: 16-27. |
13 | Roy Y, Sharqawy M H, Lienhard J H. Modeling of flat-sheet and spiral-wound nanofiltration configurations and its application in seawater nanofiltration[J]. Journal of Membrane Science, 2015, 493: 360-372. |
14 | Roy Y, Warsinger D M, Lienhard J H. Effect of temperature on ion transport in nanofiltration membranes: diffusion, convection and electromigration[J]. Desalination, 2017, 420: 241-257. |
15 | Roy Y, Lienhard J H V. Factors contributing to the change in permeate quality upon temperature variation in nanofiltration[J]. Desalination, 2019, 455: 58-70. |
16 | Labban O, Chong T H, Lienhard J H V. Design and modeling of novel low-pressure nanofiltration hollow fiber modules for water softening and desalination pretreatment[J]. Desalination, 2018, 439: 58-72. |
17 | Labban O, Liu C, Chong T H, et al. Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening[J]. Journal of Membrane Science, 2017, 521: 18-32. |
18 | Roy Y. Modeling nanofiltration for large scale desalination applications[D]. Cambridge, MA: Massachusetts Institute of Technology, 2015. |
19 | Bonner R, Germishuizen C, Franzsen S. Prediction of nanofiltration rejection performance in brackish water reverse osmosis brine treatment processes[J]. Journal of Water Process Engineering, 2019, 32: 100900. |
20 | Pan M, Sikorski J, Akroyd J, et al. Design technologies for eco-industrial parks: from unit operations to processes, plants and industrial networks[J]. Applied Energy, 2016, 175: 305-323. |
21 | DuPont de Nemours, Inc. FILMTEC™ reverse osmosis membranes technical manual[EB/OL]. [2020-03-30]. . |
22 | Karuppiah R, Bury S J, Vazquez A, et al. Optimal design of reverse osmosis-based water treatment systems[J]. AIChE Journal, 2012, 58(9): 2758-2769. |
23 | Ghobeity A, Mitsos A. Optimal time-dependent operation of seawater reverse osmosis[J]. Desalination, 2010, 263(1/2/3): 76-88. |
24 | 王沈晗, 康仑巍, 张冰剑, 等. 反渗透和压力延迟渗透耦合脱盐系统的能效优化研究[J]. 化工学报, 2019, 70(2): 617-624. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[3] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[7] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[8] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[13] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[14] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[15] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||