CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 828-840.DOI: 10.11949/0438-1157.20201139
• Reviews and monographs • Previous Articles Next Articles
SUN Jingjing1,2(),JIA Lina1,2,LIN Bo1,2,WANG Yan1,2(),GONG Junbo1,2()
Received:
2020-08-10
Revised:
2020-10-09
Online:
2021-02-05
Published:
2021-02-05
Contact:
WANG Yan,GONG Junbo
孙晶晶1,2(),贾丽娜1,2,林波1,2,王艳1,2(),龚俊波1,2()
通讯作者:
王艳,龚俊波
作者简介:
孙晶晶(1997—),女,硕士研究生,基金资助:
CLC Number:
SUN Jingjing, JIA Lina, LIN Bo, WANG Yan, GONG Junbo. Research advances of drug-drug co-crystals[J]. CIESC Journal, 2021, 72(2): 828-840.
孙晶晶, 贾丽娜, 林波, 王艳, 龚俊波. 药物-药物共晶的研究进展[J]. 化工学报, 2021, 72(2): 828-840.
Add to citation manager EndNote|Ris|BibTeX
1 | Simon F. The trouble with making combination drugs [J]. Nature Reviews Drug Discovery, 2006, 5(11): 881-882. |
2 | Wang J, Yu Q, Dai W, et al. Drug-drug co-crystallization presents a new opportunity for the development of stable vitamins [J]. Chemical Communications, 2016, 52(17): 3572-3575. |
3 | Jiang L, Huang Y, Zhang Q, et al. Preparation and solid-state characterization of dapsone drug-drug co-crystals [J]. Crystal Growth & Design, 2014, 14(9): 4562-4573. |
4 | Online Computer Library Center. Reflection paper on the use of cocrystals of active substances in medicinal products [EB]. [2015-07-16]. . |
5 | Online Computer Library Center. Regulatory classification of pharmaceutical co-crystals guidance for industry [EB]. [2018-02-15]. . |
6 | Putra O D, Furuishi T, Yonemochi E, et al. Drug-drug multicomponent crystals as an effective technique to overcome weaknesses in parent drugs [J]. Crystal Growth & Design, 2016, 16(7): 3577-3581. |
7 | Vilar L, Canadas V, Arruda M J, et al. Comparison of metformin, gliclazide MR and rosiglitazone in monotherapy and in combination for type 2 diabetes[J]. Arquivos Brasileiros de Endocrinologia & Metabologia, 2010, 54(3): 311-318. |
8 | Jones G, Prosser D E, Kaufmann M. The activating enzymes of vitamin D metabolism (25-and 1α-hydroxylases)[M]//Vitamin D. New York: Academic Press, 2018: 57-79. |
9 | Swapna B, Maddileti D, Nangia A. Cocrystals of the tuberculosis drug isoniazid: polymorphism, isostructurality, and stability [J]. Crystal Growth & Design, 2014, 14(11): 5991-6005. |
10 | 王灵宇, 杜世超, 董伟兵. 药物共晶多晶型的研究进展[J]. 化学工业与工程, 2018, 35(3): 29-37. |
Wang L Y, Du S C, Dong W B. Research advances of polymorphism in pharmaceutical cocrystals[J]. Chemical Industry and Engineering, 2018, 35(3): 29-37. | |
11 | He H, Jiang L, Zhang Q, et al. Polymorphism observed in dapsone-flavone cocrystals that present pronounced differences in solubility and stability [J]. CrystEngComm, 2015, 17(34): 6566-6574. |
12 | Porter W W, Elie S C, Matzger A J. Polymorphism in carbamazepine cocrystals [J]. Crystal Growth & Design, 2008, 8(1): 14-16. |
13 | Sekhon B S. Drug-drug co-crystals [J]. DARU, 2012, 20(1): 45-45. |
14 | Bangalore S, Kamalakkannan G, Parkar S, et al. Fixed-dose combinations improve medication compliance: a meta-analysis [J]. The American Journal of Medicine, 2007, 120(8): 713-719. |
15 | Fox Z, Dragsted U B, Gerstoft J, et al. A randomized trial to evaluate continuation versus discontinuation of lamivudine in individuals failing a lamivudine-containing regimen: the COLATE trial [J]. Antiviral Therapy, 2006, 11(6): 761-770. |
16 | Mitsuya H, Yarchoan R, Broder S. Molecular targets for AIDS therapy [J]. Science, 1990, 249(4976): 1533-1544. |
17 | Bhatt P M, Azim Y, Thakur T S, et al. Co-crystals of the anti-HIV drugs Lamivudine and Zidovudine [J]. Crystal Growth & Design, 2009, 9(2): 951-957. |
18 | Putra O D, Yoshida T, Umeda D, et al. Crystal structure determination of dimenhydrinate after more than 60 years: solving salt-cocrystal ambiguity via solid-state characterizations and solubility study [J]. Crystal Growth & Design, 2016, 16(9): 5223-5229. |
19 | Nagashima K, Takahashi A, Ikeda H, et al. Sulfonylurea and non-sulfonylurea hypoglycemic agents: pharmachological properties and tissue selectivity[J]. Diabetes Research and Clinical Practice, 2004, 66: S75-S78. |
20 | Setter S M, Iltz J L, Thams J, et al. Metformin hydrochloride in the treatment of type 2 diabetes mellitus: a clinical review with a focus on dual therapy[J]. Clinical Therapeutics, 2003, 25(12): 2991-3026. |
21 | Jia L, Wu S, Gong J. A tolbutamide-metformin salt based on antidiabetic drug combinations: synthesis, crystal structure analysis and pharmaceutical properties [J]. Acta Crystallographica Section C-Crystal Structure Communications, 2019, 75(9): 1250-1258. |
22 | Kuroda R, Higashiguchi K, Hasebe S, et al. Crystal to crystal transformation in the solid state [J]. CrystEngComm, 2004, 6(76): 464-468. |
23 | Chadwick K, Davey R J, Cross W I. How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine [J]. CrystEngComm, 2007, 9(9): 732-734. |
24 | Nguyen K L, Friscic T, Day G M, et al. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation [J]. Nature Materials, 2007, 6(3): 206-209. |
25 | Jayasankar A, Somwangthanaroj A, Shao Z J, et al. Cocrystal formation during cogrinding and storage is mediated by amorphous phase [J]. Pharmaceutical Research, 2006, 23(10): 2381-2392. |
26 | Friscic T, Jones W. Recent advances in understanding the mechanism of cocrystal formation via grinding [J]. Crystal Growth & Design, 2009, 9(3): 1621-1637. |
27 | Seefeldt K, Miller J M, Alvareznunez F, et al. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies [J]. Journal of Pharmaceutical Sciences, 2007, 96(5): 1147-1158. |
28 | Karki S, Friscic T, And W J, et al. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding [J]. Molecular Pharmaceutics, 2007, 4(3): 347-354. |
29 | Friscic T, Childs S L, Rizvi S A A, et al. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome [J]. CrystEngComm, 2009, 11(3): 418-426. |
30 | Rehder S, Klukkert M, Lobmann K, et al. Investigation of the formation process of two piracetam cocrystals during grinding [J]. Pharmaceutics, 2011, 3(4): 706-722. |
31 | Friščić T, Trask A V, Jones W, et al. Screening for inclusion compounds and systematic construction of three‐component solids by liquid‐assisted grinding[J]. Angewandte Chemie, 2006, 45(45): 7546-7550. |
32 | Wang N, Hao H, Lu H, et al. Molecular recognition and self-assembly mechanism of cocrystallization processes [J]. CrystEngComm, 2017, 19(27): 3746-3752. |
33 | Sun S, Zhang H, Xu J, et al. The competition between cocrystallization and separated crystallization based on crystallization from solution [J]. Journal of Applied Crystallography, 2019, 52(4): 769-776. |
34 | Maheshwari C, André V, Reddy S, et al. Tailoring aqueous solubility of a highly soluble compound via cocrystallization: effect of coformer ionization, pHmax and solute-solvent interactions [J]. CrystEngComm, 2012, 14(14): 4801-4811. |
35 | Sathisaran I, Dalvi S V. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium [J]. Pharmaceutics, 2018, 10(3): 108. |
36 | Babu N J, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals [J]. Crystal Growth & Design, 2011, 11(7): 2662-2679. |
37 | Chieng N, Aaltonen J, Saville D J, et al. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(1): 47-54. |
38 | Friscic T, Jones W. Benefits of cocrystallisation in pharmaceutical materials science: an update [J]. Journal of Pharmacy and Pharmacology, 2010, 62(11): 1547-1559. |
39 | Mauritz J M A, Morrisby R S, Hutton R S, et al. Imaging pharmaceutical tablets with optical coherence tomography [J]. Journal of Pharmaceutical Sciences, 2010, 99(1): 385-391. |
40 | Bavishi D D, Borkhataria C H. Spring and parachute: how cocrystals enhance solubility [J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(3): 1-8. |
41 | Huang Y, Zhang B, Gao Y, et al. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability [J]. Journal of Pharmaceutical Sciences, 2014, 103(8): 2330-2337. |
42 | McNamara D P, Childs S L, Giordano J, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API [J]. Pharmaceutical Research, 2006, 23(8): 1888-1897. |
43 | Hickey M B, Peterson M L, Scoppettuolo L, et al. Performance comparison of a co-crystal of carbamazepine with marketed product [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67(1): 112-119. |
44 | Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs[J]. Expert Opinion on Drug Delivery, 2007, 4(4): 403-416. |
45 | Patel N, Gluck J. Is Entresto good for the brain?[J]. World Journal of Cardiology, 2017, 9(7): 594-599. |
46 | Emami S, Siahi-Shadbad M, Adibkia K, et al. Recent advances in improving oral drug bioavailability by cocrystals [J]. Bioimpacts, 2018, 8(4): 305-320. |
47 | Langenickel T H, Dole W P. Angiotensin receptor-neprilysin inhibition with LCZ696: a novel approach for the treatment of heart failure[J]. Drug Discovery Today: Therapeutic Strategies, 2012, 9(4): e131-e139. |
48 | Haneef J, Chadha R. Drug-drug multicomponent solid forms: cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach [J]. AAPS PharmSciTech, 2017, 18(6): 2279-2290. |
49 | Sarmah K K, Nath N, Rao D R, et al. Mechanochemical synthesis of drug-drug and drug-nutraceutical multicomponent solids of olanzapine [J]. CrystEngComm, 2020, 22(6): 1120-1130. |
50 | Thipparaboina R, Kumar D, Chavan R B, et al. Multidrug co-crystals: towards the development of effective therapeutic hybrids [J]. Drug Discovery Today, 2016, 21(3): 481-490. |
51 | Kumar S, Nanda A. Approaches to design of pharmaceutical cocrystals: a review [J]. Mol. Cryst. Liquid Cryst., 2018, 667(1): 54-77. |
52 | Miroshnyk I, Mirza S, Sandler N. Pharmaceutical co-crystals—an opportunity for drug product enhancement [J]. Expert Opinion on Drug Delivery, 2009, 6(4): 333-341. |
53 | Fleischman S G, Kuduva S S, Mcmahon J A, et al. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine [J]. Crystal Growth & Design, 2003, 3(6): 909-919. |
54 | Aakeroy C B, Salmon D J. Building co-crystals with molecular sense and supramolecular sensibility [J]. CrystEngComm, 2005, 7(72): 439-448. |
55 | Braga D, Grepioni F. Making crystals from crystals: a green route to crystal engineering and polymorphism[J]. Chemical Communications, 2005, (29): 3635-3645. |
56 | Bis J A, Vishweshwar P, Weyna D, et al. Hierarchy of supramolecular synthons: persistent hydroxyl···pyridine hydrogen bonds in cocrystals that contain a cyano acceptor [J]. Molecular Pharmaceutics, 2007, 4(3): 401-416. |
57 | Thakuria R, Delori A, Jones W, et al. Pharmaceutical cocrystals and poorly soluble drugs [J]. International Journal of Pharmaceutics, 2013, 453(1): 101-125. |
58 | Maddileti D, Swapna B, Nangia A. High solubility crystalline pharmaceutical forms of blonanserin[J]. Crystal Growth & Design, 2014, 14(5): 2557-2570. |
59 | 马坤. 药物的共晶与盐[J]. 中国药科大学学报, 2012, 43(5): 475-480. |
Ma K. Pharmaceutical cocrystals and salts[J]. Journal of China Pharmaceutical University, 2012, 43(5): 475-480. | |
60 | Silva C C P D, Pepino R D O, de Melo C C, et al. Controlled synthesis of new 5-fluorocytosine cocrystals based on the pKa rule [J]. Crystal Growth & Design, 2014, 14(9): 4383-4393. |
61 | Grecu T, Adams H, Hunter C A, et al. Virtual screening identifies new cocrystals of nalidixic acid [J]. Crystal Growth & Design, 2014, 14(4): 1749-1755. |
62 | Grecu T, Hunter C A, Gardiner E J, et al. Validation of a computational cocrystal prediction tool: comparison of virtual and experimental cocrystal screening results [J]. Crystal Growth & Design, 2014, 14(1): 165-171. |
63 | Grecu T, Prohens R, Mccabe J F, et al. Cocrystals of spironolactone and griseofulvin based on an in silico screening method [J]. CrystEngComm, 2017, 19(26): 3592-3599. |
64 | Wood P A, Feeder N, Furlow M, et al. Knowledge-based approaches to co-crystal design [J]. CrystEngComm, 2014, 16(26): 5839-5848. |
65 | Delori A, Galek P T A, Pidcock E, et al. Knowledge-based hydrogen bond prediction and the synthesis of salts and cocrystals of the anti-malarial drug pyrimethamine with various drug and GRAS molecules [J]. CrystEngComm, 2013, 15(15): 2916-2928. |
66 | Habgood M, Deij M A, Mazurek J, et al. Carbamazepine co-crystallization with pyridine carboxamides: rationalization by complementary phase diagrams and crystal energy landscapes [J]. Crystal Growth & Design, 2010, 10(2): 903-912. |
67 | Fabian L. Cambridge structural database analysis of molecular complementarity in cocrystals [J]. Crystal Growth & Design, 2009, 9(3): 1436-1443. |
68 | Issa N, Karamertzanis P G, Welch G W A, et al. Can the formation of pharmaceutical cocrystals be computationally predicted?(Ⅰ): Comparison of lattice energies [J]. Crystal Growth & Design, 2009, 9(1): 442-453. |
69 | Mohammad M, Alhalaweh A, Velaga S P. Hansen solubility parameter as a tool to predict cocrystal formation [J]. International Journal of Pharmaceutics, 2011, 407(1): 63-71. |
70 | Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening [J]. CrystEngComm, 2008, 10(6): 665-668. |
71 | Saganowska P, Wesolowski M. DSC as a screening tool for rapid co-crystal detection in binary mixtures of benzodiazepines with co-formers [J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(1): 785-795. |
72 | Yamashita H, Hirakura Y, Yuda M, et al. Detection of cocrystal formation based on binary phase diagrams using thermal analysis [J]. Pharmaceutical Research, 2013, 30(1): 70-80. |
73 | Yamashita H, Hirakura Y, Yuda M, et al. Coformer screening using thermal analysis based on binary phase diagrams [J]. Pharmaceutical Research, 2014, 31(8): 1946-1957. |
74 | Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties [J]. Crystal Growth & Design, 2009, 9(6): 2950-2967. |
75 | Cherukuvada S, Nangia A. Eutectics as improved pharmaceutical materials: design, properties and characterization [J]. Chemical Communications, 2014, 50(8): 906-923. |
76 | Yan Y, Chen J, Lu T. Thermodynamics and preliminary pharmaceutical characterization of a melatonin-pimelic acid cocrystal prepared by a melt crystallization method [J]. CrystEngComm, 2015, 17(3): 612-620. |
77 | Sathisaran I, Dalvi S V. Crystal engineering of curcumin with salicylic acid and hydroxyquinol as coformers [J]. Crystal Growth & Design, 2017, 17(7): 3974-3988. |
78 | Skieneh J M, Sathisaran I, Dalvi S V, et al. Co-amorphous form of curcumin-folic acid dihydrate with increased dissolution rate [J]. Crystal Growth & Design, 2017, 17(12): 6273-6280. |
79 | Chow S F, Shi L, Ng W W, et al. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol [J]. Crystal Growth & Design, 2014, 14(10): 5079-5089. |
80 | Malamatari M, Ross S A, Douroumis D, et al. Experimental cocrystal screening and solution based scale-up cocrystallization methods [J]. Advanced Drug Delivery Reviews, 2017, 117: 162-77. |
81 | Chiarella R A, Davey R J, Peterson M L. Making co-crystals: the utility of ternary phase diagrams [J]. Crystal Growth & Design, 2007, 7(7): 1223-1226. |
82 | Zhang S, Chen H, Rasmuson Å C. Thermodynamics and crystallization of a theophylline-salicylic acid cocrystal [J]. CrystEngComm, 2015, 17(22): 4125-4135. |
83 | Good D J, Rodríguez-Hornedo N. Cocrystal eutectic constants and prediction of solubility behavior [J]. Crystal Growth & Design, 2010, 10(3): 1028-1032. |
84 | Lange L, Lehmkemper K, Sadowski G. Predicting the aqueous solubility of pharmaceutical cocrystals as a function of pH and temperature [J]. Crystal Growth & Design, 2016, 16(5): 2726-2740. |
85 | Sun X, Yin Q, Ding S, et al. Solid-liquid phase equilibrium and ternary phase diagrams of ibuprofen-nicotinamide cocrystals in ethanol and ethanol/water mixtures at (298.15 and 313.15) K [J]. Journal of Chemical & Engineering Data, 2015, 60(4): 1166-1172. |
86 | Duggirala N K, Perry M L, Almarsson Ö, et al. Pharmaceutical cocrystals: along the path to improved medicines [J]. Chemical Communications, 2016, 52(4): 640-655. |
87 | Desai A S, McMurray J J V, Packer M, et al. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients [J]. European Heart Journal, 2015, 36(30): 1990-1997. |
88 | Videla S, Lahjou M, Vaqué A, et al. Single‐dose pharmacokinetics of co‐crystal of tramadol-celecoxib: results of a four‐way randomized open‐label phase I clinical trial in healthy subjects[J]. British Journal of Clinical Pharmacology, 2017, 83(12): 2718-2728. |
89 | Almansa C, Mercè R, Tesson N, et al. Co-crystal of tramadol hydrochloride-celecoxib (ctc): a novel API-API co-crystal for the treatment of pain [J]. Crystal Growth & Design, 2017, 17(4): 1884-1892. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[6] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[11] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[12] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[13] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[14] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[15] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||