CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 116-131.DOI: 10.11949/0438-1157.20201247

• Reviews and monographs • Previous Articles     Next Articles

A review on kinetics and reactor concept design of propylene epoxidation using H2 and O2

DU Wei(),ZHANG Zhihua(),DUAN Xuezhi(),ZHOU Xinggui   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2020-08-30 Revised:2020-11-17 Online:2021-01-05 Published:2021-01-05
  • Contact: DUAN Xuezhi

丙烯氢氧环氧化动力学与反应器概念设计研究进展

杜威(),张志华(),段学志(),周兴贵   

  1. 华东理工大学化学工程联合国家重点实验室,上海 200237
  • 通讯作者: 段学志
  • 作者简介:杜威(1996—),男,博士研究生,duwei.001tg@163.com|张志华(1989—),男,博士研究生,zhihuazhangecust@126.com
  • 基金资助:
    国家自然科学基金优秀青年科学基金项目(21922803);上海市教委科研创新计划自然科学重大项目

Abstract:

Propylene oxide (PO) ranks among the 35 chemicals with the highest production capacity in the world, and is the second largest propylene derivative after polypropylene. It is mainly used to produce polyether polyols, polyurethanes, etc. Compared with traditional PO production technology such as the chlorohydrin, co-oxidation and HPPO method, using H2 and O2 to oxidize propylene for PO production (HOPO) has the advantages of environmental friendliness, simple process and good economic efficiency. It is the ideal technology for PO production. In this review, the reaction kinetics of the propylene epoxidation using H2 and O2 reaction are highlighted, including the main and side reaction kinetics and deactivation models. The reactor concept design based on safe operation is summarized. The existing problems of HOPO reaction are analyzed and possible research focus is remarked from the aspects of side reaction pathways, deactivation kinetics and kinetics on catalyst pellet.

Key words: catalysis, propylene oxide, kinetics, propylene epoxidation, reactor

摘要:

环氧丙烷(PO)在全球产能最高的35种化学品中,是仅次于聚丙烯的第二大丙烯衍生物,主要用于生产聚醚多元醇、聚氨酯等。相比传统的氯醇法、共氧化法和双氧水直接氧化法(HPPO)等PO生产工艺,丙烯在氢氧混合气中一步环氧化制PO(HOPO)具有工艺简单、选择性高、产物易分离、能耗低等突出优势,是生产PO的理想工艺。重点介绍了丙烯氢氧环氧化反应动力学研究进展,包括主、副反应动力学模型以及催化剂失活模型。总结了基于该过程安全操作的反应器概念设计进展。分析了丙烯氢氧环氧化反应存在的挑战,从副产物生成途径、失活动力学及颗粒催化剂上的动力学等方面展望了可能的研究方向。

关键词: 催化, 环氧丙烷, 动力学, 丙烯环氧化, 反应器

CLC Number: